An official website of the United States government
The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The site is secure.
The https:// ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
SARS-CoV-2 is a novel pathogen causing pneumonia named COVID-19 and leading to a severe pandemic since the end of 2019. The genome of SARS-CoV-2 contains a macro domain that may play an important role in regulating ADP-ribosylation in host cells and initiating viral replication. Here, we report the 1H, 13C, and 15N resonance assignments of the SARS-CoV-2 macro domain. This work provides the ground for further structural deciphering and biophysical investigation in protein function and antiviral agent design.
1 H- 15 N HSQC spectrum of SARS-CoV-2 macro domain recorded at 600…
Fig. 1
1H-15N HSQC spectrum of SARS-CoV-2 macro domain recorded at 600 MHz with a cryogenic-probe with phosphate buffer pH 6.0 at 298K. Backbone amide 1H and 15N cross-peaks are presented. The horizontal lines connect pairs of the side-chain protons from amino acids Asn and Gln
Fig. 2
1 H- 13 C HSQC…
Fig. 2
1 H- 13 C HSQC methyl correlation spectrum of SARS-CoV-2 macro domain recorded…
Fig. 2
1H-13C HSQC methyl correlation spectrum of SARS-CoV-2 macro domain recorded at 600 MHz with a cryogenic-probe with phosphate buffer pH 6.0 at 298K. The assigned methyl cross peaks are labeled
Fig. 3
The secondary structure of SARS-CoV-2…
Fig. 3
The secondary structure of SARS-CoV-2 macro domain is predicted by CαCβ chemical shift…
Fig. 3
The secondary structure of SARS-CoV-2 macro domain is predicted by CαCβ chemical shift difference, and TALOS+. Upper panel is the parameter ∆δCα − ∆δCβ shows the deviation of Cα and Cβ experimental values from the corresponding random coil values. Positive and negative values suggest α-helix and β-strand structure, respectively. Lower panel is TALOS + index showing the prediction of secondary structure distribution based on backbone N, H, Cα, Hα, C, and side-chain Cβ chemical shift values. Negative and positive values suggest α-helix (in pink) and β-strand (in green) structure, respectively. Chemical shift analysis resulting in secondary structure elements of the macro domain is represented
Cho CC, Lin MH, Chuang CY, Hsu CH. Macro domain from middle east respiratory syndrome coronavirus (MERS-CoV) is an efficient ADP-ribose binding module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES. J Biol Chem. 2016;291:4894–4902. doi: 10.1074/jbc.M115.700542.
-
DOI
-
PMC
-
PubMed
Egloff MP, et al. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J Virol. 2006;80:8493–8502. doi: 10.1128/JVI.00713-06.
-
DOI
-
PMC
-
PubMed
Eriksson KK, Cervantes-Barragan L, Ludewig B, Thiel V. Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1″-phosphatase, a viral function conserved in the alpha-like supergroup. J Virol. 2008;82:12325–12334. doi: 10.1128/JVI.02082-08.
-
DOI
-
PMC
-
PubMed
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev. 2020;34:341–359. doi: 10.1101/gad.334425.119.
-
DOI
-
PMC
-
PubMed