Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021;217(1):11.
doi: 10.1007/s11214-020-00787-3. Epub 2021 Jan 12.

SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo

S Orsini  1 S A Livi  2   3 H Lichtenegger  4 S Barabash  5 A Milillo  1 E De Angelis  1 M Phillips  2 G Laky  4 M Wieser  5 A Olivieri  6 C Plainaki  6 G Ho  7 R M Killen  8 J A Slavin  3 P Wurz  9 J-J Berthelier  10 I Dandouras  11 E Kallio  12 S McKenna-Lawlor  13 S Szalai  14 K Torkar  4 O Vaisberg  15 F Allegrini  2 I A Daglis  16   17 C Dong  18 C P Escoubet  19 S Fatemi  5 M Fränz  20 S Ivanovski  21 N Krupp  20 H Lammer  4 François Leblanc  10 V Mangano  1 A Mura  1 H Nilsson  5 J M Raines  3 R Rispoli  1 M Sarantos  8 H T Smith  7 K Szego  14 A Aronica  1 F Camozzi  22 A M Di Lellis  23 G Fremuth  4 F Giner  4 R Gurnee  24 J Hayes  7 H Jeszenszky  4 F Tominetti  22 B Trantham  2 J Balaz  25 W Baumjohann  4 D Brienza  1 U Bührke  20 M D Bush  9 M Cantatore  22 S Cibella  26 L Colasanti  1 G Cremonese  27 L Cremonesi  22 M D'Alessandro  26 D Delcourt  28 M Delva  4 M Desai  2 M Fama  29 M Ferris  2 H Fischer  20 A Gaggero  26 D Gamborino  9 P Garnier  11 W C Gibson  2 R Goldstein  2 M Grande  30 V Grishin  15 D Haggerty  7 M Holmström  5 I Horvath  14 K-C Hsieh  31 A Jacques  8 R E Johnson  32 A Kazakov  1 K Kecskemety  14 H Krüger  20 C Kürbisch  4 F Lazzarotto  27 Frederic Leblanc  33 M Leichtfried  4 R Leoni  34 A Loose  20 D Maschietti  35 S Massetti  1 F Mattioli  34 G Miller  2 D Moissenko  15 A Morbidini  1 R Noschese  1 F Nuccilli  1 C Nunez  2 N Paschalidis  8 S Persyn  2 D Piazza  9 M Oja  5 J Ryno  36 W Schmidt  36 J A Scheer  37 A Shestakov  15 S Shuvalov  15 K Seki  38 S Selci  26 K Smith  2 R Sordini  1 J Svensson  39 L Szalai  14 D Toublanc  11 C Urdiales  2 A Varsani  4 N Vertolli  1 R Wallner  4 P Wahlstroem  9 P Wilson  2 S Zampieri  1
Affiliations
Review

SERENA: Particle Instrument Suite for Determining the Sun-Mercury Interaction from BepiColombo

S Orsini et al. Space Sci Rev. 2021.

Abstract

The ESA-JAXA BepiColombo mission to Mercury will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric particle dynamics at Mercury as well as their interactions with solar wind, solar radiation, and interplanetary dust. The particle instrument suite SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is flying in space on-board the BepiColombo Mercury Planetary Orbiter (MPO) and is the only instrument for ion and neutral particle detection aboard the MPO. It comprises four independent sensors: ELENA for neutral particle flow detection, Strofio for neutral gas detection, PICAM for planetary ions observations, and MIPA, mostly for solar wind ion measurements. SERENA is managed by a System Control Unit located inside the ELENA box. In the present paper the scientific goals of this suite are described, and then the four units are detailed, as well as their major features and calibration results. Finally, the SERENA operational activities are shown during the orbital path around Mercury, with also some reference to the activities planned during the long cruise phase.

Keywords: BepiColombo space mission; Mercury’s environment; Particle instrumentation.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic of the interacting processes (from Milillo et al. 2005)
Fig. 2
Fig. 2
‘Standard’ (1-h long) and ‘fixed-slit’ (time resolution about 4 m) images, during 7 June 2012. The black arrows approximately indicate the acquisition time of each image. In the lower part of each panel, the plots of the IMF values measured by MESSENGER are shown (Bx, By, Bz and |B|, see legend). The 1-hour averages are superposed to the 1-min plots (same colors) of each IMF components. The dashed areas mask the periods when the spacecraft was inside the Mercurian magnetosphere and no in situ IMF data are available (Massetti et al. 2017)
Fig. 3
Fig. 3
Na D2 emission intensity profile close to subsolar point observed at different Mercury’s year by MESSENGER/MASC (Cassidy et al. 2015)
Fig. 4
Fig. 4
Na+-group (a), O+-group (b), and He+ (c) ion observed density along the MESSENGER orbit as a function of local time and planetary latitude (note that the northern data refer to lower altitudes). Observed regions with zero counts are colored black (Raines et al. 2015)
Fig. 5
Fig. 5
Na ion distribution under the same southward IMF (BZ = −5 nT) and SW conditions, subject to different assumptions of surface conductance. Upper panel: low conductivity; bottom panel: high conductivity. The resulting ion distributions are markedly different as the formation of an X-line further from the planet inhibits escape in the second case (Seki et al. 2013)
Fig. 6
Fig. 6
Kinetic properties of protons and Na+-group ions within the cusp. Top panels (b), (e) are energy-resolved pitch angle distributions, which show the flow direction and energy of ions relative to the magnetic field in 20 (protons) and 36 (Na+-group) bins. Slices through these distributions in the parallel, anti-parallel and perpendicular directions are shown in the bottom panels (c), (f). The Figs show protons that are flowing down toward the surface, as well as loss cone of > 40 in width. Low energy (100–300 eV) Na+-group ions appear to be upwelling from the surface, while those at energies up to 10 keV have large perpendicular energy components (Raines et al. 2014)
Fig. 7
Fig. 7
Spacecraft potential for 5 electron temperatures as a function of plasma density, computed at 0.5 AU and 0.3 AU, by assuming a spherical body. The satellite photoelectron population is described by three Maxwellian distributions (energies: 1.5, 7.5 and 15 eV, and the saturation currents are 5 nA cm−2 at 1 AU for 1.5 eV and 0.5 nA cm−2 for the other two)
Fig. 8
Fig. 8
Colour-coded precipitating (pitch angle < 90, left panel) and the mirrored (pitch angle > 90, right panel) proton flux in case of IMF (−20, 0, −5) nT at aphelion. Sample orbit of the MPO spacecraft (red line) and Mio (blue line) with magnetic field-lines are traced in the xz plane (Massetti private communication)
Fig. 9
Fig. 9
Pitch angle H+ distribution at low- (left) and high-latitudes (right), computed in case of IMF (−20, 0, −5) nT at aphelion (Massetti private communications)
Fig. 10
Fig. 10
Estimated size of the loss-cone (degrees) along possible MPO orbits. The x-axis shows the longitude (0 towards the Sun) of the apogee. The y-axis shows the co-latitude of the true anomaly angle, apogee at 90 and perigee at 270
Fig. 11
Fig. 11
Exospheres modelled for different surface release processes. (a) TD; (b) PSD; (c) ion-sputtering; (d) MIV (Mura et al. 2007)
Fig. 12
Fig. 12
Chandrayaan-1 measurements taken shortly after the Moon crossed the Earth’s bow shock to the downstream direction. Energy spectra of the SW (right side, open squares) and of the corresponding reflected energetic hydrogen (left side, open circles) (Wieser et al. 2009)
Fig. 13
Fig. 13
The energy distribution for sputtered particles, as a function of ejected Na and O particle energy in the case of 1 keV SW protons
Fig. 14
Fig. 14
Estimated neutral back-scattered total flux impinging at the ELENA FOV sectors along the MPO day side orbit considering a yield of 10%
Fig. 15
Fig. 15
Simulated ENA images, from a vantage point in the nightside (P1 = (1.8, 0, 0.8)RM) (left and middle panels) and at dawn sector (P2 = (0, 2.1, 0)RM) (right panel). Color is coded according to log (ENA flux), integrated over energy ranges: 100 eV–1 keV (left panel) and 1–10 keV middle panel, and 100 eV -10 keV right panel. The boundary conditions are: BIMF = (0, 0, −20) nT; PD = 10 kV (Mura et al. 2005)
Fig. 16
Fig. 16
ELENA sensor concept
Fig. 17
Fig. 17
MCP efficiency to H, He and O impact as a function of energy resulting from test performed by the IAPS team at the MEFISTO facility at the Bern University (Rispoli et al. 2013)
Fig. 18
Fig. 18
Upper: Simulation of the energy-integrated (between 20-1000 eV) signal from vantage point MLT=1200, 45 elevation and 500 km altitude is shown in the upper panel. The horizon at in this position is zoomed in the bottom-right panel and the slice of ELENA FOV is evidenced in the bottom-left panel. Bottom: Energy-integrated H ENA from the night side apoherm (left panel). The instantaneous FOV of the linear array of the ELENA sensor is shown as a slice in the right panel (from Mura et al. 2005, 2006)
Fig. 19
Fig. 19
Ion flux at the instrument entrance suppressed by the −1000 V/+1000 V charge stopping deflectors
Fig. 20
Fig. 20
Simion Model of Strofio, showing the 30 different electrodes, whose voltages were determined and optimized during the calibration activities
Fig. 21
Fig. 21
Expected Strofio performance at Mercury. Both elements and isotopes will be resolved in Mercury’s exosphere
Fig. 22
Fig. 22
Strofio’s count rates at 400 km altitude, estimated from Table 1. Background is estimated at the 0.1 count/s level
Fig. 23
Fig. 23
Mass spectrum of H2, He, Ne, N2, Ar, O2, CO2
Fig. 24
Fig. 24
MIPA model with aperture top hat
Fig. 25
Fig. 25
Min pitch-angle covered by MIPA as a function of the beta-angle and true anomaly angle. (0,0) corresponds to the noon-midnight orbit with the pericenter at the subsolar point
Fig. 26
Fig. 26
Max pitch-angle covered by MIPA as a function of the beta-angle and true anomaly angle. (0,0) corresponds to the noon-midnight orbit with the pericenter at the subsolar point
Fig. 27
Fig. 27
The pitch-angle range covered by MIPA as a function of the beta-angle and true anomaly angle. (0,0) corresponds to the noon-midnight orbit with the pericenter at the subsolar point
Fig. 28
Fig. 28
Field of view of MIPA (red line). The colour scale (in arbitrary units where highest value corresponds to 100% transparency) shows a pixel example
Fig. 29
Fig. 29
Simulation of primary pixels of the MIPA instrument for one of three rotationally symmetric sections of the instrument
Fig. 30
Fig. 30
Comparison between laboratory results (left) and simulations for the field of view of one MIPA pixel. The right hand panel shows a photo of the instrument
Fig. 31
Fig. 31
Sketch of the PICAM instrument
Fig. 32
Fig. 32
Sketch of PICAM ion trajectories
Fig. 33
Fig. 33
Annular array of blades of the inner part of mirror M1
Fig. 34
Fig. 34
Electrostatic Analyser ESA, consisting of three parts, which are screwed together
Fig. 35
Fig. 35
M2 serving as a convex lens to map the ions onto the detector
Fig. 36
Fig. 36
Gating electrodes for TOF measurements
Fig. 37
Fig. 37
Detector block diagram
Fig. 38
Fig. 38
Pixel geometry and mapping of the collector
Fig. 39
Fig. 39
detector top and bottom view with Electronics
Fig. 40
Fig. 40
SCU Architecture
Fig. 41
Fig. 41
Instrument physical data communication diagram
Fig. 42
Fig. 42
The Main SCU S/W functionalities diagram
Fig. 43
Fig. 43
SCU S/W transition mode diagram
Fig. 44
Fig. 44
ELENA Proto-Flight Model (PFM)
Fig. 45
Fig. 45
ELENA internal design. The red-circles highlight the external and internal charge particle-deflectors
Fig. 46
Fig. 46
Counts vs PP applied. FS test: 1-keV (above left) and 3-keV (above right) H+ 4-keV O+ (below left). PFM test. PFM test: 1-keV H+ (below right)
Fig. 47
Fig. 47
1-keV O angular scan vs acquisition number (left), Tint=10 s. The sector distribution of the scanning as a function of incidence angle (right) shows the angle-sector correspondence and spread. Note that the efficiency is lower at higher angle as shown by the normalization factor (below)
Fig. 48
Fig. 48
(left) Normalized angular scan counts for 1-keV H+. (right) Observed sector normalization factors for 1-keV O (blue line), and theoretical curve of the normalization factor (dashed black line)
Fig. 49
Fig. 49
Expected counts at 0 angle to the normal for different flux intensities, energies, species and charges vs real counts at the peak sector. Comparison with the 1 by 1 curve (dashed line)
Fig. 50
Fig. 50
Counts/s of UV at ELENA when a source of intensity 1.5 1011 ph/(cm2 s) at -40 (above), 0 (middle) and 30 (below) has been used, Tint=10 s
Fig. 51
Fig. 51
Strofio Flight Model/FM)
Fig. 52
Fig. 52
Relationship between count rate and ionization current at a pressure of 1.08×10−7 mbar
Fig. 53
Fig. 53
Multiple pressure scans
Fig. 54
Fig. 54
Relation between countrate vs Pressure × Current
Fig. 55
Fig. 55
Top: Strofio mass resolution without a velocity filter. Middle: mass resolution of Ne isotopes with a velocity filter. Down: mass resolution of Ar isotopes with a velocity filter
Fig. 56
Fig. 56
Strofio mass range for two turns
Fig. 57
Fig. 57
Photo of CASYMIR and the beam facility at the University of Bern calibration facility
Fig. 58
Fig. 58
Scan directions with respect to Strofio FOV
Fig. 59
Fig. 59
Angular acceptance and response in the ε direction
Fig. 60
Fig. 60
Mass composition of rest gas around Rosetta
Fig. 61
Fig. 61
(a) Input H2O distributions; blue: from spacecraft; red: from Mercury. (b) End-to-end transmission using a velocity filter
Fig. 62
Fig. 62
Velocity filter effects on Strofio response for (a) Ar and H2O, (b) Ne and HO2
Fig. 63
Fig. 63
Results of UV contamination tests for Strofio MCPs
Fig. 64
Fig. 64
MIPA Flight model
Fig. 65
Fig. 65
IRF-Kiruna calibration facility
Fig. 66
Fig. 66
Detector efficiencies as a function of the applied voltages
Fig. 67
Fig. 67
Dependence of the STOP efficiency on the count rate
Fig. 68
Fig. 68
MIPA ESA energy response
Fig. 69
Fig. 69
The ESA voltage as a function of the beam energy to establish the analyser constant
Fig. 70
Fig. 70
TOF spectrum for ions with M/q = 1, 2, 3, 14
Fig. 71
Fig. 71
MIPA angular sectors scheme. Note that the Zenith direction is D0 = 180×90 with Δα=30×20)
Fig. 72
Fig. 72
(left) MIPA calibration with 2 keV N+ in the Zenith direction (D0 sector). (right) Full coverage at 2 keV N+. From BC-SRN-TR-40020-01-00 _MIPA FM Calibration Report
Fig. 73
Fig. 73
(left) MIPA calibration with 9 keV N+ in D0 sector. (right) Full coverage at 9 keV N+. From BC-SRN-TR-40020-01-00 _MIPA FM Calibration Report
Fig. 74
Fig. 74
(left) MIPA calibration with 500 eV N+ in D0 sector. (right) Full coverage at 500 eV N+. From BC-SRN-TR-40020-01-00 _MIPA FM Calibration Report
Fig. 75
Fig. 75
MIPA calibration with 2 keV N+ in D12-1 sector. From BC-SRN-TR-40020-01-00 _MIPA FM Calibration Report
Fig. 76
Fig. 76
Placement of MIPA pixels based on detailed calibration data processing
Fig. 77
Fig. 77
PICAM Flight Model
Fig. 78
Fig. 78
Line plots for each PICAM ring and their elevation peak values (Nominal elevations are 15 to 75 from ring 5 to 1)
Fig. 79
Fig. 79
Panel (a) shows the azimuth and elevation mapping of the incoming ion beam (He+, 500 eV) entering the centre of sector 4 (azimuth=210 elevation=65). Panel (b) and (c): The best fitting of the ion beam pattern, resolved by numerical calculations. Panel b represents the actual number of counts from each pixel, when the particles are landing on the detector as shown in panel (c)
Fig. 80
Fig. 80
Count rates obtained with the flight model versus M1 voltage for different directions of the incoming ion beam (upper panel: He+ at 200 and 1000 eV, respectively; lower panel: N2+ at 500 eV). The half width ΔE1/2 of the energy distribution for each scan is shown
Fig. 81
Fig. 81
ToF spectra in single pulse mode for two different species (He+, N2+) obtained at 500 (upper panels) and 1000 eV (lower panel)
Fig. 82
Fig. 82
ToF spectra in Hadamard mode for 500 (N2+, He+, first and second panel) and 1000 (He+, third panel) eV ions measured with the flight model
Fig. 83
Fig. 83
Transparency (fraction of registered to incoming ion flux) for several sectors as a function of elevation angle with the flight model
Fig. 84
Fig. 84
SCU Mode Transition Diagram
Fig. 85
Fig. 85
ELENA Mode Transition Diagram
Fig. 86
Fig. 86
Strofio State Diagram
Fig. 87
Fig. 87
Strofio Mode Transition Diagram
Fig. 88
Fig. 88
MIPA Mode Transition Diagram realized by SW resident on SCU
Fig. 89
Fig. 89
MIPA Low level Sensor Mode
Fig. 90
Fig. 90
PICAM Mode Transition Diagram
Fig. 91
Fig. 91
SERENA Science Operations Scenario
Fig. 92
Fig. 92
SERENA science goals and their priority per orbit phase and instrument. Red: high priority, Yellow: normal priority. Green: low priority

References

    1. Anderson B.J., Johnson C.L., Korth H., Purucker M.E., Winslow R.M., Slavin J.A., Solomon S.C., McNutt R.L., Jr., Raines J.M., Zurbuchen T.H. Science. 2011;333:1859–1862. doi: 10.1126/science.1211001. - DOI - PubMed
    1. Balsiger H., Altwegg K., Bertaux J.-L., Bochsler P., Carignan G.R., Eberhardt P., Fisk L.A., Fuselier S.A., Ghielmetti A.G., Gliem F., Gombosi T.I., Kopp E., Korth A., Livi S., Mazelle C., Young D.T. Rosetta Orbiter Spectrometer for Ion and Neutral Analysis—ROSINA. Adv. Space Res. 1998;21(11):1527.
    1. Balsiger H., Altwegg K., Bochsler P., Eberhardt P., Fischer J., Graf S., Jäckel A., Kopp E., Langer U., Mildner M., Müller J., Riesen T., Rubin M., Scherer S., Wurz P., Wüthrich S., Arijs E., Delanoye S., De Keyser J., Neefs E., Nevejans D., Rème H., Aoustin C., Mazelle C., Médale J.-L., Sauvaud J.A., Berthelier J.-J., Bertaux J.-L., Duvet L., Illiano J.-M., Fuselier S.A., Ghielmetti A.G., Magoncelli T., Shelley E.G., Korth A., Heerlein K., Lauche H., Livi S., Loose A., Mall U., Wilken B., Gliem F., Fiethe B., Gombosi T.I., Block B., Carignan G.R., Fisk L.A., Waite J.H., Young D.T., Wollnik H. ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Sci. Rev. 2007;128:745–801.
    1. J. Benkhoff, G. Murakami, W. Baumjohann, S. Besse, E. Bunce, M. Casale, G. Cremosese, K.-H. Glassmeier, H. Hayakawa, D. Heyner, H. Hiesinger, J. Huovelin, H. Hussmann, V. Iafolla, L. Iess, Y. Kasaba, M. Kobayashi, A. Milillo, I.G. Mitrofanov, E. Montagnon, M. Novara, S. Orsini, E. Quemerais, U. Reininghaus, Y. Saito, F. Santoli, D. Stramaccioni, O. Sutherland, N. Thomas, I. Yoshikawa, J. Zender, BepiColombo – mission overview and science goals. Space Sci. Rev. (2020, submitted)
    1. Berezhnoy A. Chemistry of impact events on Mercury. Icarus. 2018;300:210–222.

LinkOut - more resources