Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr 1;48(7):1717-21.

Pathobiological effects of acrolein in cultured human bronchial epithelial cells

Affiliations
  • PMID: 3349453

Pathobiological effects of acrolein in cultured human bronchial epithelial cells

R C Grafström et al. Cancer Res. .

Abstract

The ability of the highly reactive aldehyde acrolein to affect growth, membrane integrity, differentiation, and thiol status and to cause DNA damage has been studied at serum- and thiol-free conditions using cultured human bronchial epithelial cells. Acrolein markedly decreases colony survival at 3 microM whereas about 10-fold higher concentrations are required to increase membrane permeability, measured as uptake of trypan blue dye. Acrolein at micromolar concentrations also causes epithelial cells to undergo squamous differentiation as indicated by decreased clonal growth rate, dose-dependent increased formation of cross-linked envelopes, and increased cell planar surface area. Acrolein causes a marked and dose-dependent cellular depletion of total and specific free low-molecular-weight thiols as well as protein thiols. Exposure to acrolein did not cause oxidation of glutathione indicating that thiol depletion occurred by direct conjugation of reduced glutathione to acrolein without concomitant generation of active oxygen species. Furthermore, acrolein is genotoxic and causes both DNA single strand breaks and DNA protein cross-links in human bronchial epithelial cells. The results indicate that acrolein causes several cytopathic effects that relate to multistage carcinogenesis in the human bronchial epithelium.

PubMed Disclaimer

Publication types