Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar;13(3):255-259.
doi: 10.1038/s41557-020-00627-5. Epub 2021 Jan 25.

Synthesis of a zigzag carbon nanobelt

Affiliations

Synthesis of a zigzag carbon nanobelt

Kwan Yin Cheung et al. Nat Chem. 2021 Mar.

Abstract

The structure-selective precise synthesis of carbon nanotubes (CNTs) has been long sought in materials science. The aromatic molecules corresponding to segment structures of CNTs, that is, carbon nanobelts (CNBs), are of interest as templates for CNT growth. Among the three types of CNB (armchair, chiral and zigzag CNBs), zigzag CNBs have been considered the most difficult type to synthesize. Here we report the synthesis, isolation and structural characterization of a zigzag CNB. The synthesis involves an iterative Diels-Alder reaction sequence followed by reductive aromatization of oxygen-bridged moieties. As predicted by theoretical calculations, this CNB was isolated as a stable compound. The structure of the zigzag CNB was fully characterized by X-ray crystallography and its wide energy gap with blue fluorescence properties was revealed by photophysical measurements. With synthetic strategies towards all three types of CNB in hand, the road to the precise synthesis of CNTs can now proceed to the next stage.

PubMed Disclaimer

References

    1. Kawase, T. & Kurata, H. Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave–convex π–π interaction. Chem. Rev. 106, 5250–5273 (2006). - DOI
    1. Tahara, K. & Tobe, Y. Molecular loops and belts. Chem. Rev. 106, 5274–5290 (2006). - DOI
    1. Eisenberg, D., Shenhar, R. & Rabinovitz, M. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes. Chem. Soc. Rev. 39, 2879–2890 (2010). - DOI
    1. Petrukhina, M. A. & Scott, L. T. (eds) Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (Wiley, 2012).
    1. Segawa, Y., Yagi, A., Matsui, K. & Itami, K. Design and synthesis of carbon nanotube segments. Angew. Chem. Int. Ed. 55, 5136–5158 (2016). - DOI

Publication types