Predictive Analytics for Glaucoma Using Data From the All of Us Research Program
- PMID: 33497675
- PMCID: PMC8184631
- DOI: 10.1016/j.ajo.2021.01.008
Predictive Analytics for Glaucoma Using Data From the All of Us Research Program
Abstract
Purpose: To (1) use All of Us (AoU) data to validate a previously published single-center model predicting the need for surgery among individuals with glaucoma, (2) train new models using AoU data, and (3) share insights regarding this novel data source for ophthalmic research.
Design: Development and evaluation of machine learning models.
Methods: Electronic health record data were extracted from AoU for 1,231 adults diagnosed with primary open-angle glaucoma. The single-center model was applied to AoU data for external validation. AoU data were then used to train new models for predicting the need for glaucoma surgery using multivariable logistic regression, artificial neural networks, and random forests. Five-fold cross-validation was performed. Model performance was evaluated based on area under the receiver operating characteristic curve (AUC), accuracy, precision, and recall.
Results: The mean (standard deviation) age of the AoU cohort was 69.1 (10.5) years, with 57.3% women and 33.5% black, significantly exceeding representation in the single-center cohort (P = .04 and P < .001, respectively). Of 1,231 participants, 286 (23.2%) needed glaucoma surgery. When applying the single-center model to AoU data, accuracy was 0.69 and AUC was only 0.49. Using AoU data to train new models resulted in superior performance: AUCs ranged from 0.80 (logistic regression) to 0.99 (random forests).
Conclusions: Models trained with national AoU data achieved superior performance compared with using single-center data. Although AoU does not currently include ophthalmic imaging, it offers several strengths over similar big-data sources such as claims data. AoU is a promising new data source for ophthalmic research.
Published by Elsevier Inc.
Figures
References
Publication types
MeSH terms
Grants and funding
- OT2 OD026556/OD/NIH HHS/United States
- DP5 OD029610/OD/NIH HHS/United States
- U2C OD023196/OD/NIH HHS/United States
- OT2 OD025315/OD/NIH HHS/United States
- OT2 OD026551/OD/NIH HHS/United States
- U24 OD023121/OD/NIH HHS/United States
- OT2 OD026552/OD/NIH HHS/United States
- OT2 OD026549/OD/NIH HHS/United States
- OT2 OD025337/OD/NIH HHS/United States
- T15 LM011271/LM/NLM NIH HHS/United States
- OT2 OD025277/OD/NIH HHS/United States
- OT2 OD026555/OD/NIH HHS/United States
- OT2 OD026550/OD/NIH HHS/United States
- OT2 OD026553/OD/NIH HHS/United States
- OT2 OD023205/OD/NIH HHS/United States
- OT2 OD025276/OD/NIH HHS/United States
- OT2 OD026557/OD/NIH HHS/United States
- OT2 OD026554/OD/NIH HHS/United States
- U24 OD023163/OD/NIH HHS/United States
- OT2 OD023206/OD/NIH HHS/United States
- U24 OD023176/OD/NIH HHS/United States
- OT2 OD026548/OD/NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
