Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 23;13(3):422.
doi: 10.3390/cancers13030422.

Emerging Roles of Urine-Derived Components for the Management of Bladder Cancer: One Man's Trash Is Another Man's Treasure

Affiliations
Review

Emerging Roles of Urine-Derived Components for the Management of Bladder Cancer: One Man's Trash Is Another Man's Treasure

Sarah Minkler et al. Cancers (Basel). .

Abstract

Urinary bladder cancer (UBC) is the most common malignancy of the urinary tract in humans, with an estimated global prevalence of 1.1 million cases over 5 years. Because of its high rates of recurrence and resistance to chemotherapy, UBC is one of the most expensive cancers to treat, resulting in significant health care costs. The development of innovative molecular and cellular tools is necessary to refine patient stratification and help predict response to treatment. Urine is an underused resource of biological components shed from bladder tumors, such as exfoliated cells and extracellular vesicles, that could serve as molecular fingerprints and provide valuable biological insights into tumor phenotype and mechanisms of resistance to chemotherapy. Additionally, characterization of urine-derived extracellular vesicles and cells could be used as reliable biomarkers for prediction of response to neoadjuvant therapy.

Keywords: bladder cancer; exosomes; one health; organoids; precision medicine.

PubMed Disclaimer

Conflict of interest statement

K.A. and J.P.M. are co-founders of 3D Health Solutions Inc, a start-up entity from Iowa State University that develops 3D organoid systems for drug screening. The authors declare no other conflict of interest.

References

    1. Chamie K., Litwin M.S., Bassett J.C., Daskivich T.J., Lai J., Hanley J.M., Konety B.R., Saigal C.S. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer. 2013;119:3219–3227. doi: 10.1002/cncr.28147. - DOI - PMC - PubMed
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. - DOI - PubMed
    1. Kamat A.M., Hahn N.M., Efstathiou J.A., Lerner S.P., Malmström P.U., Choi W., Guo C.C., Lotan Y., Kassouf W. Bladder cancer. Lancet. 2016;388:2796–2810. doi: 10.1016/S0140-6736(16)30512-8. - DOI - PubMed
    1. Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur. Urol. 2005;48:202–205. doi: 10.1016/j.eururo.2005.04.006. - DOI - PubMed
    1. Peyton C.C., Tang D., Reich R.R., Azizi M., Chipollini J., Pow-Sang J.M., Manley B., Spiess P.E., Poch M.A., Sexton W.J., et al. Downstaging and Survival Outcomes Associated With Neoadjuvant Chemotherapy Regimens Among Patients Treated With Cystectomy for Muscle-Invasive Bladder Cancer. JAMA Oncol. 2018;4:1535–1542. doi: 10.1001/jamaoncol.2018.3542. - DOI - PMC - PubMed

LinkOut - more resources