Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 18:14:215-225.
doi: 10.2147/DMSO.S238419. eCollection 2021.

Current Perspectives on the Role of Very-Low-Energy Diets in the Treatment of Obesity and Type 2 Diabetes in Youth

Affiliations
Review

Current Perspectives on the Role of Very-Low-Energy Diets in the Treatment of Obesity and Type 2 Diabetes in Youth

Megan L Gow et al. Diabetes Metab Syndr Obes. .

Abstract

In both developed and developing countries, pediatric obesity and type 2 diabetes are an increasing public health concern: globally 5.6% of girls and 7.8% of boys aged ≥5 years have obesity. The incidence of type 2 diabetes has increased in youth in recent decades and disproportionately affects those from ethnic/racial minority groups and disadvantaged backgrounds. For the treatment of both conditions, conventional lifestyle intervention is frequently ineffective, access to bariatric surgery is very limited and many young people are unsuitable or unwilling to undergo surgery. A very-low-energy diet (VLED) provides a viable alternative and may be effective for weight reduction and improved glycemic control in youth, based on one systematic review. In particular, in the treatment of type 2 diabetes, a chart review and a pilot study both demonstrated that a VLED can reduce the requirement for medications, including insulin, and lead to the remission of diabetes. However, long-term follow-up and safety data remain limited and therefore a VLED is inconsistently recommended by clinical practice guidelines for the treatment of pediatric obesity and type 2 diabetes. In clinical practice, VLED use in children and adolescents is uniquely challenging due to intolerance of expected side effects, difficulty adhering to the highly restrictive diet and difficulty with behaviour change within the current social context and environment. Ultimately, more research, including larger, longer-term trials with comprehensive safety monitoring are required to strengthen the evidence base. This would inform clinical practice guidelines, which may facilitate more widespread utilization of VLED programs in the management of obesity and type 2 diabetes in youth.

Keywords: obesity; pediatrics; type 2 diabetes; very-low-energy diet; youth.

PubMed Disclaimer

Conflict of interest statement

MLG is supported by a NHMRC Early Career Fellowship (APP1158876); MEC is supported by a NHMRC practitioner fellowship (APP1136735); BV is supported by a Research Training Program Stipend (The University of Sydney) and a Charles Perkins Centre top-up scholarship (The University of Sydney); HJ is supported by the Sydney Medical School Foundation. The authors report no other conflicts of interest in this work.

Figures

Figure 1
Figure 1
(A) Meta-analysis of weight loss immediately following a very-low-energy diet intervention. (B) Meta-analysis of weight loss at latest follow-up following a very-low-energy diet intervention. Reproduced with permission from Andela S, Burrows TL, Baur LA, Coyle DH, Collins CE, Gow ML. Efficacy of very low-energy diet programs for weight loss: a systematic review with meta-analysis of intervention studies in children and adolescents with obesity. Obes Rev. 2019;20(6):871–882; © 2019 World Obesity Federation.

References

    1. N. C. D. Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–2642. - PMC - PubMed
    1. Lobstein T, Brinsden H. Atlas of Childhood Obesity. London: World Obesity Federation; 2019.
    1. Mayer-Davis EJ, Kahkoska AR, Jefferies C, et al. ISPAD clinical practice consensus guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):7–19. doi:10.1111/pedi.12773 - DOI - PMC - PubMed
    1. Tran F, Stone M, Huang CY, et al. Population-based incidence of diabetes in Australian youth aged 10–18 yr: increase in type 1 diabetes but not type 2 diabetes. Pediatr Diabetes. 2014;15(8):585–590. doi:10.1111/pedi.12131 - DOI - PubMed
    1. Divers J, Mayer-Davis EJ, Lawrence JM, et al. Trends in incidence of type 1 and type 2 diabetes among youths - selected counties and Indian reservations, United States, 2002–2015. MMWR Morb Mortal Wkly Rep. 2020;69(6):161–165. doi:10.15585/mmwr.mm6906a3 - DOI - PMC - PubMed

LinkOut - more resources