Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr;22(2):165-187.
doi: 10.1007/s10522-021-09910-5. Epub 2021 Jan 27.

Aging and age-related diseases: from mechanisms to therapeutic strategies

Affiliations
Review

Aging and age-related diseases: from mechanisms to therapeutic strategies

Zhe Li et al. Biogerontology. 2021 Apr.

Abstract

Aging is a physiological process mediated by numerous biological and genetic pathways, which are directly linked to lifespan and are a driving force for all age-related diseases. Human life expectancy has greatly increased in the past few decades, but this has not been accompanied by a similar increase in their healthspan. At present, research on aging biology has focused on elucidating the biochemical and genetic pathways that contribute to aging over time. Several aging mechanisms have been identified, primarily including genomic instability, telomere shortening, and cellular senescence. Aging is a driving factor of various age-related diseases, including neurodegenerative diseases, cardiovascular diseases, cancer, immune system disorders, and musculoskeletal disorders. Efforts to find drugs that improve the healthspan by targeting the pathogenesis of aging have now become a hot topic in this field. In the present review, the status of aging research and the development of potential drugs for aging-related diseases, such as metformin, rapamycin, resveratrol, senolytics, as well as caloric restriction, are summarized. The feasibility, side effects, and future potential of these treatments are also discussed, which will provide a basis to develop novel anti-aging therapeutics for improving the healthspan and preventing aging-related diseases.

Keywords: Age‐related diseases; Aging; Anti‐aging drugs; Hallmarks of aging.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Metformin targets the major pathways of aging. Extracellularly, metformin decreases insulin levels and IGF-1 signaling while influencing multiple cytokines to participate in anti-aging processes. Intracellularly, metformin reduces ROS production by inhibiting mitochondrial complex I in the electron transport chain generation and AMPK activation, simultaneous increase in mTOR signal inhibition and SIRT1 activation, which resulting in a longer life-span; Metformin affects inflammatory responses, cellular stress responses and autophagy responses, etc. by acting both inside and outside the cell. These cellular processes are the primary biological responses associated with aging
Fig. 2
Fig. 2
Rapamycin regulates lifespan primarily through the mTOR signaling pathway. mTOR exists mainly in two functionally distinct complexes termed mTORC1 and mTORC2. Rapamycin inhibits mTORC1 on an intermittent basis, while long-term administration also inhibits mTORC2 in most tissues. Inhibition of mTORC1 promotes protein and nucleotide synthesis as well as autophagy responses, while also reducing cellular stress responses. These effects of rapamycin may promote longevity. In contrast, inhibition of mTORC2 leads to metabolic dysfunction and reduced lifespan, but the exact mechanism is unclear
Fig. 3
Fig. 3
Resveratrol is involved in anti-aging as an activator of the sirtuin family and the Nrf2 pathway. Inhibition of mitochondrial ATP production by resveratrol leads to activation of AMPK, which enhances NAD + availability thereby overcoming the rate limitation imposed by this cofactor on SIRT1 enzyme activity. In turn, resveratrol directly activates SIRT1 thereby positively controlling AMPK activity. Together, AMPK and SIRT1 form a positive feedback pathway to prolong life by modulating multiple downstream factors. In addition, resveratrol can act directly on transcriptional regulators thus acting as an anti-inflammatory and antioxidant effect
Fig. 4
Fig. 4
Senolytic therapies target aging. During the aging process, senescent cells accumulate in large amounts in tissues and are associated with the development of various age-related diseases. Senolytics can help slow down the aging process by eliminating the accumulation of senescent cells, reducing age-related diseases and prolonging healthspan. Uncontrolled activation of SASP can cause chronic inflammation, leading to tissue dysfunction, this ultimately leads to aging and age-related diseases. Senolytics also can positively impact aging-related diseases by modulating the regulatory network of SASP in senescent cells and by inhibiting SASP from exerting its deleterious effects

Similar articles

Cited by

References

    1. Acosta JC, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–1018. doi: 10.1016/j.cell.2008.03.038. - DOI - PubMed
    1. Acosta JC, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978–990. doi: 10.1038/ncb2784. - DOI - PMC - PubMed
    1. Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M. Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase . Endocr Relat Cancer. 2010;17:351–360. doi: 10.1677/erc-09-0252. - DOI - PubMed
    1. Algire C, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res. 2012;5:536–543. doi: 10.1158/1940-6207.capr-11-0536. - DOI - PubMed
    1. Anisimov VN, et al. Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol. 2010;176:2092–2097. doi: 10.2353/ajpath.2010.091050. - DOI - PMC - PubMed

Publication types