Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 27;22(2):58.
doi: 10.1208/s12249-021-01934-x.

Oral Bioavailability Improvement of Tailored Rosuvastatin Loaded Niosomal Nanocarriers to Manage Ischemic Heart Disease: Optimization, Ex Vivo and In Vivo Studies

Affiliations

Oral Bioavailability Improvement of Tailored Rosuvastatin Loaded Niosomal Nanocarriers to Manage Ischemic Heart Disease: Optimization, Ex Vivo and In Vivo Studies

Qiang Liu et al. AAPS PharmSciTech. .

Retraction in

Abstract

Rosuvastatin is an efficient antihyperlipidemic agent; however, being a BCS class II molecule, it shows poor oral bioavailability of < 20%. The present study focused on the improvement of oral bioavailability of rosuvastatin using tailored niosomes. The niosomes were prepared by film hydration method and sonication using cholesterol and Span 40. The Box-Behnken design (BBD) was applied to optimize the size (98 nm) and the entrapment efficacy (77%) of the niosomes by selecting cholesterol at 122 mg, Span 40 at 0.52%, and hydration time at 29.88 min. The transmission electron microscopy image showed spherical shape niosomes with smooth surface without aggregation. The ex vivo intestinal permeability studies showed significant improvement in the rosuvastatin permeation (95.5% after 2 h) using niosomes in comparison to the rosuvastatin suspension (40.1% after 2 h). The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in the oral bioavailability with optimized rosuvastatin loaded niosomes (relative bioavailability = 2.01) in comparison to the rosuvastatin suspension, due to high surface area of niosomes and its lymphatic uptake via transcellular route. In conclusion, the optimized rosuvastatin loaded niosomes offers a promising approach to improve the oral bioavailability of rosuvastatin.

Keywords: Box-Behnken design; niosomes; pharmacokinetic studies; rosuvastatin.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Awad HH, Anderson FA Jr, Gore JM, Goodman SG, Goldberg RJ. Cardiogenic shock complicating acute coronary syndromes: insights from the Global Registry of Acute Coronary Events. Am Heart J. 2012;163(6):963–71. - PubMed
    1. J.A. Ambrose, M. Singh, Pathophysiology of coronary artery disease leading to acute coronary syndromes, Fprime reports 7 (2015).
    1. Turpie AG. Burden of disease: medical and economic impact of acute coronary syndromes. Am J Manag Care. 2006;12(16):S430. - PubMed
    1. Jackevicius CA, Mamdani M, Tu JV. Adherence with statin therapy in elderly patients with and without acute coronary syndromes. Jama. 2002;288(4):462–7. - PubMed
    1. Heeschen C, Hamm CW, Laufs U, Snapinn S, Böhm M, White HD. Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation. 2002;105(12):1446–52. - PubMed

Publication types

LinkOut - more resources