Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 10;69(5):1637-1646.
doi: 10.1021/acs.jafc.0c06810. Epub 2021 Jan 27.

Identification of Core Regulatory Genes and Metabolic Pathways for the n-Propanol Synthesis in Saccharomyces cerevisiae

Affiliations

Identification of Core Regulatory Genes and Metabolic Pathways for the n-Propanol Synthesis in Saccharomyces cerevisiae

Ya-Ping Wang et al. J Agric Food Chem. .

Abstract

The n-propanol produced by Saccharomyces cerevisiae has a remarkable effect on the taste and flavor of Chinese Baijiu. The n-propanol metabolism-related genes were deleted to evaluate the role in the synthesis of n-propanol to ascertain the key genes and pathways for the production of n-propanol by S. cerevisiae. The results showed that CYS3, GLY1, ALD6, PDC1, ADH5, and YML082W were the key genes affecting the n-propanol metabolism in yeast. The n-propanol concentrations of α5ΔGLY1, α5ΔCYS3, and α5ΔALD6 increased by 121.75, 22.75, and 17.78%, respectively, compared with α5. The n-propanol content of α5ΔPDC1, α5ΔADH5, and α5ΔYML082W decreased by 24.98, 8.35, and 8.44%, respectively, compared with α5. The contents of intermediate metabolites were measured, and results showed that the mutual transformation of glycine and threonine in the threonine pathway and the formation of propanal from 2-ketobutyrate were the core pathways for the formation of n-propanol. Additionally, YML082W played important role in the synthesis of n-propanol by directly producing 2-ketobutyric acid through l-homoserine. This study provided valuable insights into the n-propanol synthesis in S. cerevisiae and the theoretical basis for future optimization of yeast strains in Baijiu making.

Keywords: 2-ketobutyrate; Baijiu; Saccharomyces cerevisiae; n-propanol; threonine pathway.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources