Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun;43(16):2443-2456.
doi: 10.1080/09593330.2021.1882583. Epub 2021 Feb 11.

Aeration and non-aeration cycles (AE/NA) time: influence in combined organic matter and nitrogen removal and features of biofilm

Affiliations

Aeration and non-aeration cycles (AE/NA) time: influence in combined organic matter and nitrogen removal and features of biofilm

Camila Souza Azevedo et al. Environ Technol. 2022 Jun.

Abstract

This research aimed the performance evaluation of a structured bed reactor with different cycles of Intermittent Aeration (IA)(SBRRIA) in the municipal sewage treatment and the verification of the effect of IA cycles on the total nitrogen (TN) removal and organic matter (COD). Three IA cycles were evaluated: phase I (4 h AE (aeration on) - 2 h NA (aeration off)); II (2 h AE-1 h NA) and III (2 h AE-2 h NA), with Hydraulic Retention Time of 16 h. The best nitrogen removal was obtained during phase II, with the lowest non-aeration time: efficiency of nitrification, denitrification, TN and COD removal of 80 ± 15%, 82 ± 12%, 67 ± 6% and 94 ± 7%, respectively. The mean cell residence time was 19, 26 and 33 d in phases I, II and III, respectively. The statistical analysis applied to the AE/NA profiles showed that the time of AE and NA in the cycles did not influence nitrogen and organic matter removal. Thus, this indicates the recirculation and the gradient formed in the support material facilitate the process of Simultaneous Nitrification and Denitrification. The lowest concentration of nitrifying and denitrifying microorganisms was obtained in effluent and sludge at the end of phase III. From the TP (Total Proteins)/TPS (Total Polysaccharides) ratio obtained (0.8 ± 0.1, 1.3 ± 0.1 e 1.5 ± 0.1 in phases I, II and III), it was possible to conclude that the biofilm in phase I was more porous, with a thin layer if compared to that in phase II and III.

Keywords: Aerobic/anoxic ratio; biofilm; extracellular polymeric substances; simultaneous nitrification and denitrification; support material.

PubMed Disclaimer

Similar articles

LinkOut - more resources