Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 23;15(3):4066-4076.
doi: 10.1021/acsnano.0c07961. Epub 2021 Jan 28.

High-Throughput 3D Ensemble Characterization of Individual Core-Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging

Affiliations

High-Throughput 3D Ensemble Characterization of Individual Core-Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging

Do Hyung Cho et al. ACS Nano. .

Abstract

The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and algorithms for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices, and elastic strain. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at the atomic level. This work establishes a route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.

Keywords: 3D strain field; X-ray free electron laser; ensemble 3D imaging; high-index facet nanoparticles; single-particle imaging; structural inhomogeneity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources