Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr;81(4):1240-6.
doi: 10.1172/JCI113441.

Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver

Affiliations

Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver

H Jaeschke et al. J Clin Invest. 1988 Apr.

Abstract

The hypothesis that intracellular generation of reactive oxygen species in hepatocytes or reticuloendothelial cells may cause ischemia-reperfusion injury was tested in isolated perfused livers of male Fischer rats. GSSG was measured in perfusate, bile, and tissue as a sensitive index of oxidative stress. After a preperfusion phase of 30 min, the perfusion was stopped (global ischemia) for various times (30, 120 min) and the liver was reperfused for another 60 min. The bile flow (1.48 +/- 0.17 microliters/min X gram liver weight), the biliary efflux of total glutathione (6.54 +/- 0.94 nmol GSH eq/min X g), and GSSG (1.59 +/- 0.23 nmol GSH eq/min X g) recovered to 69-86% after short-term ischemia and to 36-72% after 2 h of ischemia when compared with values obtained from control livers perfused for the same period of time. During reperfusion, the sinusoidal efflux of total glutathione (16.4 +/- 2.1 nmol GSH eq/min X g) and GSSG (0.13 +/- 0.05 nmol GSH eq/min X g) did not change except for an initial 10-30-s increase during reperfusion washout. No increased GSSG secretion into bile was detectable at any time during reperfusion. The liver content of total glutathione (32.5 +/- 3.5 nmol GSH eq/mg protein) and GSSG (0.27 +/- 0.09 nmol GSH eq/mg protein) did not change significantly during any period of ischemia or reperfusion. We conclude, therefore, that at most only a minor amount of reactive oxygen species were generated during reperfusion. Thus, reactive oxygen species are unlikely to cause ischemia/reperfusion injury in rat liver by lipid peroxidation or tissue thiol oxidation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Mol Pharmacol. 1987 Sep;32(3):417-22 - PubMed
    1. J Mol Cell Cardiol. 1985 Feb;17(2):145-52 - PubMed
    1. Surgery. 1983 Sep;94(3):407-11 - PubMed
    1. Gastroenterology. 1983 Oct;85(4):808-14 - PubMed
    1. Eur J Biochem. 1984 May 15;141(1):211-5 - PubMed

Publication types