[Kcnq1ot1 promotes osteogenic differentiation and suppresses osteoclast differentiation]
- PMID: 33509750
- PMCID: PMC7867490
- DOI: 10.12122/j.issn.1673-4254.2021.01.04
[Kcnq1ot1 promotes osteogenic differentiation and suppresses osteoclast differentiation]
Abstract
Objective: To investigate the regulatory role of long non-coding RNA Kcnq1ot1 in osteoclast differentiation, osteogenic differentiation and osteoporosis.
Methods: The expression of lnc-Kcnq1ot1, Bglap, Runx2, Alp, Bsp, Nfatc1, Mmp9, Ctsk and Oscar were detected by real-time quantitative PCR (qRT-PCR) in the femoral bones from mouse models of postmenopausal osteoporosis (ovariectomized mice, n=8), disuse osteoporosis (induced by tail suspension, n=14) and agerelated osteoporosis (18-month-old mice, n=8), and also in MC3T3-E1 cells during osteoblast differentiation and in murine bone marrow-derived macrophages (BMMs) and RAW264.7 cells during osteoclast differentiation. MC3T3-E1 cells with lncKcnq1ot1 knockdown by lentivirus infection were induced to differentiate into osteoblasts using osteogenic induction medium, and the expression of lnc-Kcnq1ot1, Alp and Bglap was detected with qRT-PCR and ALP activity was assessed with ALP staining. BMMs and RAW264.7 cells were transfected with siRNAs targeting lnc-Kcnq1ot1 and stimulated with RANKL and/or M-CSF, and the expression of lnc-Kcnq1ot1, Ctsk and Oscar was detected by qRT-PCR, and TRAP activity was assessed by TRAP staining. The subcellular localization of lnc-Kcnq1ot1 in MC3T3-E1 and RAW264.7 cells was determined using cell fractionation followed by qRT-PCR.
Results: The expression of lnc-Kcnq1ot1 was significantly upregulated during osteoblast differentiation but downregulated in the bone tissues of osteoporotic mice and during osteoclast differentiation (P < 0.05). Silencing lnc-Kcnq1ot1 obviously decreased the expression of Bglap and Alp (P < 0.05) and attenuated osteogenic medium-induced osteoblast differentiation. Knockdown of lnc-Kcnq1ot1 also promoted the expression of Ctsk and Oscar (P < 0.05) and aggravated RANKL-induced osteoclast differentiation. The results of cell fractionation and qRT-PCR demonstrated that lnc-Kcnq1ot1 was located mainly in the nuclei of MC3T3-E1 and RAW264.7 cells.
Conclusions: Our data demonstrate that lnc-Kcnq1ot1 promotes osteogenic differentiation and alleviates osteoclast differentiation, suggesting the potential of lnc-Kcnq1ot1 as a therapeutic target against osteoporosis.
目的: 探究长链非编码RNA Kcnq1ot1对成骨细胞分化和破骨细胞分化的调控作用。
方法: 运用荧光实时定量PCR技术分别在卵巢去势(双侧卵巢切除,n=8)、鼠尾悬吊(后肢悬空,n=14)以及自然衰老(正常饲养至18月龄,n=8)引起的骨质疏松小鼠以及各自对照小鼠(n=6)股骨组织中,小鼠前成骨细胞系MC3T3-E1向成骨细胞分化过程中以及小鼠骨髓源巨噬细胞BMMs和小鼠单核巨噬细胞系RAW264.7向破骨细胞分化过程中检测lnc-Kcnq1ot1、骨钙素(Bglap)、Runt相关转录因子2(Runx2)、碱性磷酸酶基因(Alp)、骨涎蛋白(Bsp)、活化T-细胞核因子c1(Nfatc1)、基质金属蛋白酶9(Mmp9)、组织蛋白酶K(Ctsk)和破骨细胞相关受体(Oscar)的表达水平;运用两对特异性以慢病毒为载体的短发夹RNAs(Lv-shRNAs)或小干扰RNAs(siRNAs)在MC3T3-E1、BMMs和RAW264.7细胞诱导分化过程中沉默lnc-Kcnq1ot1,随后运用荧光实时定量PCR技术检测lnc-Kcnq1ot1、成骨相关基因(Bglap、Alp)和破骨相关基因(Ctsk、Oscar)的表达;运用ALP染色检测碱性磷酸酶活性;运用抗酒石酸磷酸酶染色检测抗酒石酸磷酸酶活性。运用核浆分离联合荧光实时定量PCR技术检测lnc-Kcnq1ot1亚细胞定位。
结果: 与对照相比,lnc-Kcnq1ot1在卵巢去势、鼠尾悬吊以及自然衰老引起的疏松股骨组织中表达显著降低(P < 0.05);在MC3T3-E1向成骨细胞分化过程中表达增多(P < 0.05);在小鼠BMMs和RAW264.7向破骨细胞分化过程中表达显著降低(P < 0.05)。在MC3T3-E1细胞中,沉默lnc-Kcnq1ot1抑制Bglap和Alp的表达(P < 0.05),并减弱成骨诱导剂引起的成骨细胞分化;在小鼠BMMs和RAW264.7细胞中,沉默lnc-Kcnq1ot1促进Ctsk和Oscar的表达(P < 0.05),并加重RANKL诱导的破骨细胞分化。核浆定位显示lncKcnq1ot1主要定位在MC3T3-E1和RAW264.7细胞核内。
结论: lnc-Kcnq1ot1促进成骨细胞分化和抑制破骨细胞分化,可能成为骨质疏松症的一个潜在治疗靶点。
Keywords: Kcnq1ot1; osteoclastogenesis; osteogenesis; osteoporosis.
Figures







Similar articles
-
Icariin influences adipogenic differentiation of stem cells affected by osteoblast-osteoclast co-culture and clinical research adipogenic.Biomed Pharmacother. 2017 Apr;88:436-442. doi: 10.1016/j.biopha.2017.01.050. Epub 2017 Jan 22. Biomed Pharmacother. 2017. PMID: 28122309
-
Arecoline suppresses RANKL-induced osteoclast differentiation in vitro and attenuates LPS-induced bone loss in vivo.Phytomedicine. 2020 Apr;69:153195. doi: 10.1016/j.phymed.2020.153195. Epub 2020 Feb 22. Phytomedicine. 2020. PMID: 32200293
-
Oridonin promotes osteogenesis through Wnt/β-catenin pathway and inhibits RANKL-induced osteoclastogenesis in vitro.Life Sci. 2020 Dec 1;262:118563. doi: 10.1016/j.lfs.2020.118563. Epub 2020 Oct 7. Life Sci. 2020. PMID: 33038376
-
Gene expression profiles for in vitro human stem cell differentiation into osteoblasts and osteoclasts: a systematic review.PeerJ. 2022 Oct 17;10:e14174. doi: 10.7717/peerj.14174. eCollection 2022. PeerJ. 2022. PMID: 36275474 Free PMC article.
-
Role of histone modification in the occurrence and development of osteoporosis.Front Endocrinol (Lausanne). 2022 Aug 26;13:964103. doi: 10.3389/fendo.2022.964103. eCollection 2022. Front Endocrinol (Lausanne). 2022. PMID: 36093077 Free PMC article. Review.
Cited by
-
Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets.Mol Med. 2024 Feb 3;30(1):20. doi: 10.1186/s10020-024-00788-w. Mol Med. 2024. PMID: 38310228 Free PMC article. Review.
-
Research Progress on the Inflammatory Effects of Long Non-coding RNA in Traumatic Brain Injury.Front Mol Neurosci. 2022 Mar 10;15:835012. doi: 10.3389/fnmol.2022.835012. eCollection 2022. Front Mol Neurosci. 2022. PMID: 35359568 Free PMC article. Review.
-
[Expression of RUNX2/LAPTM5 in MC3T3-E1 osteoblastic cells with induced mineralization].Nan Fang Yi Ke Da Xue Xue Bao. 2021 Aug 31;41(9):1394-1399. doi: 10.12122/j.issn.1673-4254.2021.09.15. Nan Fang Yi Ke Da Xue Xue Bao. 2021. PMID: 34658355 Free PMC article. Chinese.
-
LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases.Genes Dis. 2021 Aug 16;9(6):1556-1565. doi: 10.1016/j.gendis.2021.07.003. eCollection 2022 Nov. Genes Dis. 2021. PMID: 36157505 Free PMC article. Review.
-
Bone Biopsy for Histomorphometry in Chronic Kidney Disease (CKD): State-of-the-Art and New Perspectives.J Clin Med. 2021 Oct 8;10(19):4617. doi: 10.3390/jcm10194617. J Clin Med. 2021. PMID: 34640633 Free PMC article. Review.
References
-
- Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as epigenetic markers in osteoporosis and bone fracture risk: a step forward in personalized diagnosis. Front Genet. 2019;10:1044. doi: 10.3389/fgene.2019.01044. [Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as epigenetic markers in osteoporosis and bone fracture risk: a step forward in personalized diagnosis[J]. Front Genet, 2019, 10: 1044.] - DOI - PMC - PubMed
-
- Lei SF, Chen Y, Xiong DH, et al. Ethnic difference in osteoporosisrelated phenotypes and its potential underlying genetic determination. J Musculoskelet Neuronal Interact. 2006;6(1):36–46. [Lei SF, Chen Y, Xiong DH, et al. Ethnic difference in osteoporosisrelated phenotypes and its potential underlying genetic determination[J]. J Musculoskelet Neuronal Interact, 2006, 6(1): 36-46.] - PubMed
-
- Liu ZH, Piao JH, Pang LP, et al. The diagnostic criteria for primary osteoporosis and the incidence of osteoporosis in China. J Bone Miner Metab. 2002;20(4):181–9. doi: 10.1007/s007740200026. [Liu ZH, Piao JH, Pang LP, et al. The diagnostic criteria for primary osteoporosis and the incidence of osteoporosis in China[J]. J Bone Miner Metab, 2002, 20(4): 181-9.] - DOI - PubMed
-
- Zhang K, Shi ZM, Chang YN, et al. The ways of action of long noncoding RNAs in cytoplasm and nucleus. Gene. 2014;547(1):1–9. doi: 10.1016/j.gene.2014.06.043. [Zhang K, Shi ZM, Chang YN, et al. The ways of action of long noncoding RNAs in cytoplasm and nucleus[J]. Gene, 2014, 547(1): 1-9.] - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous