A lower-than-expected saltation threshold at Martian pressure and below
- PMID: 33509927
- PMCID: PMC7865126
- DOI: 10.1073/pnas.2012386118
A lower-than-expected saltation threshold at Martian pressure and below
Abstract
Aeolian sediment transport is observed to occur on Mars as well as other extraterrestrial environments, generating ripples and dunes as on Earth. The search for terrestrial analogs of planetary bedforms, as well as environmental simulation experiments able to reproduce their formation in planetary conditions, are powerful ways to question our understanding of geomorphological processes toward unusual environmental conditions. Here, we perform sediment transport laboratory experiments in a closed-circuit wind tunnel placed in a vacuum chamber and operated at extremely low pressures to show that Martian conditions belong to a previously unexplored saltation regime. The threshold wind speed required to initiate saltation is only quantitatively predicted by state-of-the art models up to a density ratio between grain and air of [Formula: see text] but unexpectedly falls to much lower values for higher density ratios. In contrast, impact ripples, whose emergence is continuously observed on the granular bed over the whole pressure range investigated, display a characteristic wavelength and propagation velocity essentially independent of pressure. A comparison of these findings with existing models suggests that sediment transport at low Reynolds number but high grain-to-fluid density ratio may be dominated by collective effects associated with grain inertia in the granular collisional layer.
Keywords: Mars; impact ripples; saltation at low pressure; sediment transport threshold.
Conflict of interest statement
The authors declare no competing interest.
Figures




References
-
- Sullivan R., et al. , Wind driven particle mobility on Mars: Insights from Mars exploration rover observations at El Dorado and surroundings at Gusev crater. J. Geophys. Res. 113, E06S07 (2008).
-
- Hansen C., et al. , Seasonal erosion and restoration of Mars northern polar dunes. Science 331, 575–578 (2011). - PubMed
-
- Bridges N. T., et al. , Planet-wide sand motion on Mars. Geology 40, 31–34 (2012).
-
- Lapôtre M., Rampe E., Curiosity’s investigation of the Bagnold dunes, Gale crater: Overview of the two-phase scientific campaign and introduction to the special collection. Geophys. Res. Lett. 45, 10200–10210 (2018).
-
- Baker M., et al. , Coarse sediment transport in the modern Martian environment. J. Geophys. Res. 123, 1380–1394 (2018).
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous