Neutrophil dysfunction in bronchiectasis: an emerging role for immunometabolism
- PMID: 33509959
- DOI: 10.1183/13993003.03157-2020
Neutrophil dysfunction in bronchiectasis: an emerging role for immunometabolism
Abstract
Bronchiectasis is a heterogenous disease with multiple underlying causes. The pathophysiology is poorly understood but neutrophilic inflammation and dysfunctional killing of pathogens is believed to be key. There are, however, no licensed therapies for bronchiectasis that directly target neutrophilic inflammation. In this review, we discuss our current understanding of neutrophil dysfunction and therapeutic targeting in bronchiectasis. Immunometabolic reprogramming, a process through which inflammation changes inflammatory cell behaviour by altering intracellular metabolic pathways, is increasingly recognised across multiple inflammatory and autoimmune diseases. Here, we show evidence that much of the neutrophil dysfunction observed in bronchiectasis is consistent with immunometabolic reprogramming. Previous attempts at developing therapies targeting neutrophils have focused on reducing neutrophil numbers, resulting in increased frequency of infections. New approaches are needed and we propose that targeting metabolism could theoretically reverse neutrophil dysfunction and dysregulated inflammation. As an exemplar, 5' adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation has already been shown to reverse phagocytic dysfunction and neutrophil extracellular trap (NET) formation in models of pulmonary disease. AMPK modulates multiple metabolic pathways, including glycolysis which is critical for energy generation in neutrophils. AMPK activators can reverse metabolic reprogramming and are already in clinical use and/or development. We propose the need for a new immunomodulatory approach, rather than an anti-inflammatory approach, to enhance bacterial clearance and reduce bronchiectasis disease severity.
Copyright ©The authors 2021. For reproduction rights and permissions contact permissions@ersnet.org.
Conflict of interest statement
Conflict of interest: Y.H. Giam has nothing to disclose. Conflict of interest: A. Shoemark has nothing to disclose. Conflict of interest: J.D. Chalmers reports grants and personal fees from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline and Insmed, personal fees from Chiesi, Novartis and Zambon, and grants from Gilead Sciences, outside of the submitted work.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials