Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2021 Jan 29;21(1):48.
doi: 10.1186/s12906-021-03206-4.

Pelargonium sidoides root extract for the treatment of acute cough due to lower respiratory tract infection in adults: a feasibility double-blind, placebo-controlled randomised trial

Affiliations
Randomized Controlled Trial

Pelargonium sidoides root extract for the treatment of acute cough due to lower respiratory tract infection in adults: a feasibility double-blind, placebo-controlled randomised trial

Merlin Willcox et al. BMC Complement Med Ther. .

Abstract

Background: Pelargonium sidoides DC (Geraniaceae) root extract, EPs®7630 or "Kaloba®", is a widely used herbal remedy for respiratory infections, with some evidence of effectiveness for acute bronchitis. However, it is not yet widely recommended by medical professionals in the UK. There is a need to undertake appropriately designed randomised trials to test its use as an alternative to antibiotics. The aim was to assess the feasibility of conducting a double-blind randomised controlled trial of Pelargonium sidoides root extract for treatment of acute bronchitis in UK primary care, investigating intervention compliance, patient preference for dosage form and acceptability of patient diaries.

Study design: Feasibility double-blind randomised placebo-controlled clinical trial.

Methods: We aimed to recruit 160 patients with cough (≤ 21 days) caused by acute bronchitis from UK general practices. Practices were cluster-randomised to liquid or tablet preparations and patients were individually randomised to Kaloba® or placebo. We followed participants up for 28 days through self-reported patient diaries with telephone support and reviewed medical records at one month. Outcomes included recruitment, withdrawal, safety, reconsultation and symptom diary completion rates. We also assessed treatment adherence, antibiotic prescribing and consumption, mean symptom severity (at days 2-4 after randomisation) and time to symptom resolution. We interviewed 29 patients and 11 health professionals to identify barriers and facilitators to running such a randomised trial.

Results: Of 543 patients screened, 261 were eligible, of whom 134 (51%) were recruited and 103 (77%) returned a completed diary. Overall, 41% (41/100) of patients took antibiotics (Kaloba® liquid group: 48% [15/31]; placebo liquid group: 23% [6/26]; Kaloba® tablet group: 48% [9/21]; placebo tablet group: 50% [11/22]). Most patients adhered to the study medication (median 19 out of 21 doses taken in week 1, IQR 18-21 - all arms combined). There were no serious adverse events relating to treatment. Most patients interviewed found study recruitment to be straightforward, but some found the diary too complex.

Conclusions: It was feasible and acceptable to recruit patients from UK primary care to a double-blind placebo-controlled trial of herbal medicine (Kaloba®) for the treatment of acute bronchitis, with good retention and low data attrition.

Trial registration: HATRIC was registered on the ISRCTN registry ( ISRCTN17672884 ) on 16 August 2018, retrospectively registered. The record can be found at http://www.isrctn.com/ISRCTN17672884 .

Keywords: Acute bronchitis; Cluster-randomised; Cough; Double-blind randomised; Feasibility clinical trial; Herbal medicine; Placebo-controlled; Retention.

PubMed Disclaimer

Conflict of interest statement

Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany provided the IMP free of charge and provided payment for access to the anonymised aggregated data at the end of the trial. The study was run independently and the company was not involved in analysing the data. They reviewed the article but did not have editorial rights.

Figures

Fig. 1
Fig. 1
CONSORT diagram

References

    1. Her Majesty's Government. Tackling antimicrobial resistance 2019–2024: The UK’s five-year national action plan London: Her Majesty's Government; 2019 [Available from: https://www.gov.uk/government/publications/uk-5-year-action-plan-for-ant.... - PubMed
    1. Goossens H, Ferech M, Vander Stichele R, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet (London, England). 2005;365(9459):579–87. - PubMed
    1. Hernandez-Santiago V, Davey PG, Nathwani D, Marwick CA, Guthrie B. Changes in resistance among coliform bacteraemia associated with a primary care antimicrobial stewardship intervention: a population-based interrupted time series study. PLoS Med. 2019;16(6):e1002825. doi: 10.1371/journal.pmed.1002825. - DOI - PMC - PubMed
    1. Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ (Clinical research ed). 2010;340:c2096. - PubMed
    1. van Hecke O, Wang K, Lee JJ, Roberts NW, Butler CC. Implications of antibiotic resistance for patients’ recovery from common infections in the community: a systematic review and meta-analysis. Clin Infect Dis. 2017;65(3):371–382. doi: 10.1093/cid/cix233. - DOI - PMC - PubMed

Publication types