Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb;13(2):131-139.
doi: 10.1038/s41557-020-00624-8. Epub 2021 Jan 29.

Mechanochemical bond scission for the activation of drugs

Affiliations

Mechanochemical bond scission for the activation of drugs

Shuaidong Huo et al. Nat Chem. 2021 Feb.

Erratum in

Abstract

Pharmaceutical drug therapy is often hindered by issues caused by poor drug selectivity, including unwanted side effects and drug resistance. Spatial and temporal control over drug activation in response to stimuli is a promising strategy to attenuate and circumvent these problems. Here we use ultrasound to activate drugs from inactive macromolecules or nano-assemblies through the controlled scission of mechanochemically labile covalent bonds and weak non-covalent bonds. We show that a polymer with a disulfide motif at the centre of the main chain releases an alkaloid-based anticancer drug from its β-carbonate linker by a force-induced intramolecular 5-exo-trig cyclization. Second, aminoglycoside antibiotics complexed by a multi-aptamer RNA structure are activated by the mechanochemical opening and scission of the nucleic acid backbone. Lastly, nanoparticle-polymer and nanoparticle-nanoparticle assemblies held together by hydrogen bonds between the peptide antibiotic vancomycin and its complementary peptide target are activated by force-induced scission of hydrogen bonds. This work demonstrates the potential of ultrasound to activate mechanoresponsive prodrug systems.

PubMed Disclaimer

Comment in

References

    1. Wang, X., Ryu, D., Houtkooper, R. H. & Auwerx, J. Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. BioEssays 37, 1045–1053 (2015). - PubMed - PMC - DOI
    1. Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016). - PubMed - DOI
    1. Velema, W. A., Szymanski, W. & Feringa, B. L. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136, 2178–2191 (2014). - PubMed - DOI
    1. Hüll, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018). - DOI
    1. Mosayebi, J., Kiyasatfar, M. & Laurent, S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv. Healthcare Mater. 6, 1700306 (2017). - DOI

Publication types

LinkOut - more resources