Engineering SARS-CoV-2 using a reverse genetic system
- PMID: 33514944
- PMCID: PMC8168523
- DOI: 10.1038/s41596-021-00491-8
Engineering SARS-CoV-2 using a reverse genetic system
Abstract
Reverse genetic systems are a critical tool for studying viruses and identifying countermeasures. In response to the ongoing COVID-19 pandemic, we recently developed an infectious complementary DNA (cDNA) clone for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse genetic system can be used to rapidly engineer viruses with desired mutations to study the virus in vitro and in vivo. Viruses can also be designed for live-attenuated vaccine development and engineered with reporter genes to facilitate serodiagnosis, vaccine evaluation and antiviral screening. Thus, the reverse genetic system of SARS-CoV-2 will be widely used for both basic and translational research. However, due to the large size of the coronavirus genome (~30,000 nucleotides long) and several toxic genomic elements, manipulation of the reverse genetic system of SARS-COV-2 is not a trivial task and requires sophisticated methods. Here, we describe the technical details of how to engineer recombinant SARS-CoV-2. Overall, the process includes six steps: (i) prepare seven plasmids containing SARS-CoV-2 cDNA fragment(s), (ii) prepare high-quality DNA fragments through restriction enzyme digestion of the seven plasmids, (iii) assemble the seven cDNA fragments into a genome-length cDNA, (iv) in vitro transcribe RNA from the genome-length cDNA, (iv) electroporate the genome-length RNA into cells to recover recombinant viruses and (vi) characterize the rescued viruses. This protocol will enable researchers from different research backgrounds to master the use of the reverse genetic system and, consequently, accelerate COVID-19 research.
Conflict of interest statement
Competing interests
X.X., V.D.M, and P.-Y.S. have filed a patent on the reverse genetic system of SARS-CoV-2 and reporter SARS-CoV-2. Other authors declare no competing interests.
Figures





Comment in
-
Protocols and risks: when less is more.Nat Protoc. 2022 Jan;17(1):1-2. doi: 10.1038/s41596-021-00655-6. Epub 2021 Dec 6. Nat Protoc. 2022. PMID: 34873329 No abstract available.
Similar articles
-
Reverse genetic systems of SARS-CoV-2 for antiviral research.Antiviral Res. 2023 Feb;210:105486. doi: 10.1016/j.antiviral.2022.105486. Epub 2022 Dec 22. Antiviral Res. 2023. PMID: 36657881 Free PMC article. Review.
-
Infectious Clones Produce SARS-CoV-2 That Causes Severe Pulmonary Disease in Infected K18-Human ACE2 Mice.mBio. 2021 Apr 20;12(2):e00819-21. doi: 10.1128/mBio.00819-21. mBio. 2021. PMID: 33879586 Free PMC article.
-
Rescue of SARS-CoV-2 from a Single Bacterial Artificial Chromosome.mBio. 2020 Sep 25;11(5):e02168-20. doi: 10.1128/mBio.02168-20. mBio. 2020. PMID: 32978313 Free PMC article.
-
Use of a Bacterial Artificial Chromosome to Generate Recombinant SARS-CoV-2 Expressing Robust Levels of Reporter Genes.Microbiol Spectr. 2022 Dec 21;10(6):e0273222. doi: 10.1128/spectrum.02732-22. Epub 2022 Nov 7. Microbiol Spectr. 2022. PMID: 36342302 Free PMC article.
-
Reverse genetics systems for SARS-CoV-2: Development and applications.Virol Sin. 2023 Dec;38(6):837-850. doi: 10.1016/j.virs.2023.10.001. Epub 2023 Oct 11. Virol Sin. 2023. PMID: 37832720 Free PMC article. Review.
Cited by
-
Inactivation of Ebola Virus and SARS-CoV-2 in Cell Culture Supernatants and Cell Pellets by Gamma Irradiation.Viruses. 2022 Dec 23;15(1):43. doi: 10.3390/v15010043. Viruses. 2022. PMID: 36680083 Free PMC article.
-
SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3.J Virol. 2023 Feb 28;97(2):e0153222. doi: 10.1128/jvi.01532-22. Epub 2023 Feb 1. J Virol. 2023. PMID: 36722972 Free PMC article.
-
Human coronaviruses: The emergence of SARS-CoV-2 and management of COVID-19.Virus Res. 2022 Oct 2;319:198882. doi: 10.1016/j.virusres.2022.198882. Epub 2022 Aug 4. Virus Res. 2022. PMID: 35934258 Free PMC article. Review.
-
Rapid Proliferation of Pandemic Research: Implications for Dual-Use Risks.mBio. 2021 Oct 26;12(5):e0186421. doi: 10.1128/mBio.01864-21. Epub 2021 Oct 19. mBio. 2021. PMID: 34663091 Free PMC article.
-
Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge.PLoS Biol. 2021 Nov 4;19(11):e3001284. doi: 10.1371/journal.pbio.3001284. eCollection 2021 Nov. PLoS Biol. 2021. PMID: 34735434 Free PMC article.
References
Key references using this protocol
-
- Johnson BA et al. Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis. bioRxiv, doi:10.1101/2020.08.26.268854 (2020). - DOI
Publication types
MeSH terms
Substances
Grants and funding
- R21 AI145400/AI/NIAID NIH HHS/United States
- AG049042/U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R01 AI134907/AI/NIAID NIH HHS/United States
- R00 AG049092/AG/NIA NIH HHS/United States
- U19 AI142759/AI/NIAID NIH HHS/United States
- R43 AI145617/AI/NIAID NIH HHS/United States
- UL1 TR001439/TR/NCATS NIH HHS/United States
- AI134907/U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- UC7 AI094660/AI/NIAID NIH HHS/United States
- R01 AI153602/AI/NIAID NIH HHS/United States
- AI42759/U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous