Invited Commentary: Quantitative Bias Analysis Can See the Forest for the Trees
- PMID: 33517401
- DOI: 10.1093/aje/kwab011
Invited Commentary: Quantitative Bias Analysis Can See the Forest for the Trees
Abstract
The accompanying article by Jiang et al. (Am J Epidemiol. 2021;190(9):1830-1840) extends quantitative bias analysis from the realm of statistical models to the realm of machine learning algorithms. Given the rooting of statistical models in the spirit of explanation and the rooting of machine learning algorithms in the spirt of prediction, this extension is thought-provoking indeed. Some such thoughts are expounded upon here.
Keywords: machine learning; measurement error; misclassification; quantitative bias analysis; random forests.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Comment in
-
Jiang et al. Respond to "Quantitative Bias Analysis".Am J Epidemiol. 2021 Sep 1;190(9):1844-1845. doi: 10.1093/aje/kwab009. Am J Epidemiol. 2021. PMID: 34467403 Free PMC article. No abstract available.
Comment on
-
Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis.Am J Epidemiol. 2021 Sep 1;190(9):1830-1840. doi: 10.1093/aje/kwab010. Am J Epidemiol. 2021. PMID: 33517416 Free PMC article.
Similar articles
-
Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis.Am J Epidemiol. 2021 Sep 1;190(9):1830-1840. doi: 10.1093/aje/kwab010. Am J Epidemiol. 2021. PMID: 33517416 Free PMC article.
-
Invited Commentary: Toward Better Bias Analysis.Am J Epidemiol. 2021 Aug 1;190(8):1613-1616. doi: 10.1093/aje/kwab068. Am J Epidemiol. 2021. PMID: 33778860
-
Invited Commentary: Machine Learning in Causal Inference-How Do I Love Thee? Let Me Count the Ways.Am J Epidemiol. 2021 Aug 1;190(8):1483-1487. doi: 10.1093/aje/kwab048. Am J Epidemiol. 2021. PMID: 33751059
-
Harnessing causal forests for epidemiologic research: key considerations.Am J Epidemiol. 2024 Jun 3;193(6):813-818. doi: 10.1093/aje/kwae003. Am J Epidemiol. 2024. PMID: 38319713
-
Machine Learning Principles for Radiology Investigators.Acad Radiol. 2020 Jan;27(1):13-25. doi: 10.1016/j.acra.2019.07.030. Acad Radiol. 2020. PMID: 31818379 Review.
Cited by
-
Jiang et al. Respond to "Quantitative Bias Analysis".Am J Epidemiol. 2021 Sep 1;190(9):1844-1845. doi: 10.1093/aje/kwab009. Am J Epidemiol. 2021. PMID: 34467403 Free PMC article. No abstract available.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources