Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb:172:104750.
doi: 10.1016/j.pestbp.2020.104750. Epub 2020 Nov 17.

Novel degradation pathways for Chlorpyrifos and 3, 5, 6-Trichloro-2-pyridinol degradation by bacterial strain Bacillus thuringiensis MB497 isolated from agricultural fields of Mianwali, Pakistan

Affiliations

Novel degradation pathways for Chlorpyrifos and 3, 5, 6-Trichloro-2-pyridinol degradation by bacterial strain Bacillus thuringiensis MB497 isolated from agricultural fields of Mianwali, Pakistan

Samina Ambreen et al. Pestic Biochem Physiol. 2021 Feb.

Abstract

Over use of organophosphate pesticides including Chlorpyrifos (CPF) has led to contamination of soil and water resources, resulting in serious health problems in humans along with other non-target organisms. The current study was aimed to investigate Chlorpyrifos as well as 3, 5, 6-Trichloro-2-pyridinol (TCP) biodegradation tendency of bacterial strain Bacillus thuringiensis MB497 isolated from wheat/cotton fields of Dera Saleemabad, Mianwali, Pakistan, having a history of heavy Organophosphate pesticides application. HPLC analysis revealed almost 99% degradation of the spiked CPF (200 mg L-1) in M-9 broth, soil slurry and soil microcosm by MB497 after 9 days of incubation. Strain MB497 was also able to degrade and transform TCP (28 mg L-1), up to 90.57% after 72 h of incubation in M-9 broth. A novel compound Di-isopropyl methanephosphonate along with known products of 3, 5, 6-Trichloro-2-pyridinol (TCP), Diethyl thiophospsphate and Phosphorothioic acid were detected as metabolites of CPF by GCMS analysis. Three novel metabolites of TCP (p-Propyl phenol, 2-Ethoxy-4, 4, 5, 5-tetramethyloxazoline and 3-(2, 4, 5-Trichlorophenoxy)-1-propyne) were identified after 72 h. Based on these metabolites, new/amended metabolic pathways for CPF and TCP degradation in these bacteria has been suggested.

Keywords: 3; 5; 6-Trichloropyridinol; Biodegradation; Chlorpyrifos; GCMS; Metabolic pathway; Organophosphate; Pesticide.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources