Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator
- PMID: 33520618
- PMCID: PMC7834612
- DOI: 10.1016/j.rinp.2020.103610
Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator
Abstract
A mathematical model for the spread of the COVID-19 disease based on a fractional Atangana-Baleanu operator is studied. Some fixed point theorems and generalized Gronwall inequality through the AB fractional integral are applied to obtain the existence and stability results. The fractional Adams-Bashforth is used to discuss the corresponding numerical results. A numerical simulation is presented to show the behavior of the approximate solution in terms of graphs of the spread of COVID-19 in the Chinese city of Wuhan. We simulate our table for the data of Wuhan from February 15, 2020 to April 25, 2020 for 70 days. Finally, we present a debate about the followed simulation in characterizing how the transmission dynamics of infection can take place in society.
Keywords: Adams–Bashforth technique; Atangana–Baleanu operator; COVID-19; Fixed point technique; Generalized Gronwall inequality; Stability and existence theory.
© 2020 The Authors.
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures








Similar articles
-
On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative.Chaos Solitons Fractals. 2020 Jun;135:109867. doi: 10.1016/j.chaos.2020.109867. Epub 2020 May 8. Chaos Solitons Fractals. 2020. PMID: 32390692 Free PMC article.
-
Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator.Comput Methods Biomech Biomed Engin. 2023 Jan;26(1):98-112. doi: 10.1080/10255842.2022.2047954. Epub 2022 Mar 10. Comput Methods Biomech Biomed Engin. 2023. PMID: 35271386
-
Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative.Results Phys. 2020 Dec;19:103507. doi: 10.1016/j.rinp.2020.103507. Epub 2020 Oct 12. Results Phys. 2020. PMID: 33072498 Free PMC article.
-
On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems.Chaos. 2019 Feb;29(2):023111. doi: 10.1063/1.5085490. Chaos. 2019. Retraction in: Chaos. 2021 Dec;31(12):129902. doi: 10.1063/5.0078046. PMID: 30823722 Retracted.
-
A mathematical system of COVID-19 disease model: Existence, uniqueness, numerical and sensitivity analysis.MethodsX. 2023;10:102045. doi: 10.1016/j.mex.2023.102045. Epub 2023 Jan 28. MethodsX. 2023. PMID: 36742367 Free PMC article. Review.
Cited by
-
Modeling nosocomial infection of COVID-19 transmission dynamics.Results Phys. 2022 Jun;37:105503. doi: 10.1016/j.rinp.2022.105503. Epub 2022 Apr 21. Results Phys. 2022. PMID: 35469342 Free PMC article.
-
Swarming morlet wavelet neural network procedures for the mathematical robot system.Inform Med Unlocked. 2022;33:101081. doi: 10.1016/j.imu.2022.101081. Epub 2022 Sep 24. Inform Med Unlocked. 2022. PMID: 36185733 Free PMC article.
-
Modeling of fractional-order COVID-19 epidemic model with quarantine and social distancing.Math Methods Appl Sci. 2021 Jul 30;44(11):9334-9350. doi: 10.1002/mma.7360. Epub 2021 Mar 29. Math Methods Appl Sci. 2021. PMID: 34230734 Free PMC article.
-
The role of a vaccine booster for a fractional order model of the dynamic of COVID-19: a case study in Thailand.Sci Rep. 2025 Jan 7;15(1):1162. doi: 10.1038/s41598-024-80390-6. Sci Rep. 2025. PMID: 39774616 Free PMC article.
-
Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative.Adv Differ Equ. 2021;2021(1):184. doi: 10.1186/s13662-021-03316-w. Epub 2021 Mar 24. Adv Differ Equ. 2021. PMID: 33777126 Free PMC article.
References
-
- Rachah A., Torres D.F.M. Dynamics and optimal control of Ebola transmission. Math Comput Sci. 2016;10:331–342. doi: 10.1007/s11786-016-0268-y. - DOI
-
- Kahn J.S., McIntosh K. History and recent advances in coronavirus discovery. Pediatric Infect Dis J. 2005;24(11):223–227. - PubMed
-
- Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion ofpatients with colds. Lancet. 1966;1:76–77. - PubMed
-
- Ndaïrou F., Area I., Nieto J.J., Silva C.J., Torres D.F.M. Mathematical modeling of zika disease in pregnant women and newborns with microcephaly in Brazil. Math Methods Appl Sci. 2018;41:8929–8941.
-
- Brauer F., Castillo-Chavez C., Feng Z. Springer-Verlag New York; 2019. Mathematical Models in Epidemiology.
Further Reading
-
- Djordjevic J., Silva C.J., Torres D.F.M. A stochastic sica epidemic model for hiv transmission. Appl Math Lett. 2018;84:168–175. doi: 10.1016/j.aml.2018.05.005. - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous