Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 22:13:31-39.
doi: 10.2147/RRU.S268596. eCollection 2021.

A Systematic Review of Artificial Intelligence in Prostate Cancer

Affiliations
Review

A Systematic Review of Artificial Intelligence in Prostate Cancer

Derek J Van Booven et al. Res Rep Urol. .

Abstract

The diagnosis and management of prostate cancer involves the interpretation of data from multiple modalities to aid in decision making. Tools like PSA levels, MRI guided biopsies, genomic biomarkers, and Gleason grading are used to diagnose, risk stratify, and then monitor patients during respective follow-ups. Nevertheless, diagnosis tracking and subsequent risk stratification often lend itself to significant subjectivity. Artificial intelligence (AI) can allow clinicians to recognize difficult relationships and manage enormous data sets, which is a task that is both extraordinarily difficult and time consuming for humans. By using AI algorithms and reducing the level of subjectivity, it is possible to use fewer resources while improving the overall efficiency and accuracy in prostate cancer diagnosis and management. Thus, this systematic review focuses on analyzing advancements in AI-based artificial neural networks (ANN) and their current role in prostate cancer diagnosis and management.

Keywords: active surveillance; artificial intelligence; clinical trials; prostate cancer.

PubMed Disclaimer

Conflict of interest statement

The authors report no conflicts of interest for this work. Declaration of interests: the authors declare no competing interests.

Figures

Figure 1
Figure 1
Schematic depicting the architecture of an artificial neural network.
Figure 2
Figure 2
Flow diagram representing different phases of the systematic literature research according to PRISMA criteria.

References

    1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. doi:10.3322/caac.21262 - DOI - PubMed
    1. Strom P, Kartasalo K, Olsson H, et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based. Diagnostic Study, Lancet Oncol. 2020;21:222–232. doi:10.1016/S1470-2045(19)30738-7 - DOI - PubMed
    1. Harmon SA, Tuncer S, Sanford T, Choyke PL, Türkbey B. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol. 2019;25:183–188. - PMC - PubMed
    1. Harmon SA, Tuncer S, Sanford T, Choyke PL, Turkbey B. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn Interv Radiol. 2019;25:183–188. - PMC - PubMed
    1. Carroll PH, Mohler JL. NCCN guidelines updates: prostate cancer and prostate cancer early detection. J Natl Compr Canc Netw. 2018;16:620–623. doi:10.6004/jnccn.2018.0036 - DOI - PubMed