Lanthanide-Doped Upconversion Nanoparticles for Super-Resolution Microscopy
- PMID: 33520938
- PMCID: PMC7843451
- DOI: 10.3389/fchem.2020.619377
Lanthanide-Doped Upconversion Nanoparticles for Super-Resolution Microscopy
Abstract
Super-resolution microscopy offers a non-invasive and real-time tool for probing the subcellular structures and activities on nanometer precision. Exploring adequate luminescent probes is a great concern for acquiring higher-resolution image. Benefiting from the atomic-like transitions among real energy levels, lanthanide-doped upconversion nanoparticles are featured by unique optical properties including excellent photostability, large anti-Stokes shifts, multicolor narrowband emissions, tunable emission lifetimes, etc. The past few years have witnessed the development of upconversion nanoparticles as probes for super-resolution imaging studies. To date, the optimal resolution reached 28 nm (λ/36) for single nanoparticles and 82 nm (λ/12) for cytoskeleton structures with upconversion nanoparticles. Compared with conventional probes such as organic dyes and quantum dots, upconversion nanoparticle-related super-resolution microscopy is still in the preliminary stage, and both opportunities and challenges exist. In this perspective article, we summarized the recent advances of upconversion nanoparticles for super-resolution microscopy and projected the future directions of this emerging field. This perspective article should be enlightening for designing efficient upconversion nanoprobes for super-resolution imaging and promote the development of upconversion nanoprobes for cell biology applications.
Keywords: STED; lanthanide; multiphoton imaging; super-resolution microscopy; upconversion nanoparticle.
Copyright © 2021 Dong, Sun and Yan.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures


Similar articles
-
Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications.Light Sci Appl. 2024 Sep 14;13(1):252. doi: 10.1038/s41377-024-01547-6. Light Sci Appl. 2024. PMID: 39277593 Free PMC article. Review.
-
Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance.Nanoscale. 2020 Oct 15;12(39):20347-20355. doi: 10.1039/d0nr04809g. Nanoscale. 2020. PMID: 33006350
-
Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles.Nat Commun. 2017 Oct 20;8(1):1058. doi: 10.1038/s41467-017-01141-y. Nat Commun. 2017. PMID: 29051497 Free PMC article.
-
Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy.Bioconjug Chem. 2020 Aug 19;31(8):1857-1872. doi: 10.1021/acs.bioconjchem.0c00320. Epub 2020 Jul 24. Bioconjug Chem. 2020. PMID: 32649825
-
Emerging ≈800 nm Excited Lanthanide-Doped Upconversion Nanoparticles.Small. 2017 Feb;13(6). doi: 10.1002/smll.201602843. Epub 2016 Dec 16. Small. 2017. PMID: 27982542 Review.
Cited by
-
Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles.Anal Bioanal Chem. 2022 Jun;414(15):4291-4310. doi: 10.1007/s00216-022-03999-4. Epub 2022 Mar 21. Anal Bioanal Chem. 2022. PMID: 35312819 Review.
-
Fluorescent Nanoparticles for Super-Resolution Imaging.Chem Rev. 2022 Aug 10;122(15):12495-12543. doi: 10.1021/acs.chemrev.2c00050. Epub 2022 Jun 27. Chem Rev. 2022. PMID: 35759536 Free PMC article. Review.
-
Lanthanide-Doped Upconversion Luminescent Nanoparticles-Evolving Role in Bioimaging, Biosensing, and Drug Delivery.Materials (Basel). 2022 Mar 23;15(7):2374. doi: 10.3390/ma15072374. Materials (Basel). 2022. PMID: 35407706 Free PMC article. Review.
-
NIR-triggered upconversion nanoparticles@thermo-sensitive liposome hybrid theranostic nanoplatform for controlled drug delivery.RSC Adv. 2021 Aug 31;11(46):29065-29072. doi: 10.1039/d1ra04431a. eCollection 2021 Aug 23. RSC Adv. 2021. PMID: 35478587 Free PMC article.
-
Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared.Neurosci Bull. 2024 Aug;40(8):1173-1188. doi: 10.1007/s12264-024-01179-1. Epub 2024 Feb 19. Neurosci Bull. 2024. PMID: 38372931 Free PMC article. Review.
References
-
- Abbe E. (1873). Beiträge zur theorie des mikroskops und der micrkoskopischen wahrnehmung. Arch. Mikrosk. Anat. 9, 413–468. 10.1007/BF02956173 - DOI
-
- Bednarkiewicz A., Chan E. M., Kotulska A., Marciniak L., Prorok K. (2019). Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 4, 881–889. 10.1039/C9NH00089E - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous