Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021 Jun;126(6):745-760.
doi: 10.1007/s11547-021-01333-z. Epub 2021 Feb 1.

CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors

Affiliations
Observational Study

CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors

Giulia Benedetti et al. Radiol Med. 2021 Jun.

Abstract

Purpose: To assess the ability of radiomic features (RF) extracted from contrast-enhanced CT images (ceCT) and non-contrast-enhanced (non-ceCT) in discriminating histopathologic characteristics of pancreatic neuroendocrine tumors (panNET).

Methods: panNET contours were delineated on pre-surgical ceCT and non-ceCT. First- second- and higher-order RF (adjusted to eliminate redundancy) were extracted and correlated with histological panNET grade (G1 vs G2/G3), metastasis, lymph node invasion, microscopic vascular infiltration. Mann-Whitney with Bonferroni corrected p values assessed differences. Discriminative power of significant RF was calculated for each of the end-points. The performance of conventional-imaged-based-parameters was also compared to RF.

Results: Thirty-nine patients were included (mean age 55-years-old; 24 male). Mean diameters of the lesions were 24 × 27 mm. Sixty-nine RF were considered. Sphericity could discriminate high grade tumors (AUC = 0.79, p = 0.002). Tumor volume (AUC = 0.79, p = 0.003) and several non-ceCT and ceCT RF were able to identify microscopic vascular infiltration: voxel-alignment, neighborhood intensity-difference and intensity-size-zone families (AUC ≥ 0.75, p < 0.001); voxel-alignment, intensity-size-zone and co-occurrence families (AUC ≥ 0.78, p ≤ 0.002), respectively). Non-ceCT neighborhood-intensity-difference (AUC = 0.75, p = 0.009) and ceCT intensity-size-zone (AUC = 0.73, p = 0.014) identified lymph nodal invasion; several non-ceCT and ceCT voxel-alignment family features were discriminative for metastasis (p < 0.01, AUC = 0.80-0.85). Conventional CT 'necrosis' could discriminate for microscopic vascular invasion (AUC = 0.76, p = 0.004) and 'arterial vascular invasion' for microscopic metastasis (AUC = 0.86, p = 0.001). No conventional-imaged-based-parameter was significantly associated with grade and lymph node invasion.

Conclusions: Radiomic features can discriminate histopathology of panNET, suggesting a role of radiomics as a non-invasive tool for tumor characterization.

Trial registration number: NCT03967951, 30/05/2019.

Keywords: Area under the curve (AUC); Computed tomography; Neuroendocrine tumors; Pancreatic neoplasms; Radiomic features.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Maxwell JE, Howe JR (2015) Imaging in neuroendocrine tumors: an update for the clinician. Int J Endocr Oncol 2(2):159–168 - DOI
    1. Lewis RB, Lattin GE, Paal E (2010) Pancreatic endocrine tumors: radiologic clinicopathologic correlation. Radiographics 30(6):1445–1464 - DOI
    1. Klimstra DS (2016) Pathologic classification of neuroendocrine neoplasms. Hematol Oncol Clin North Am 30(1):1–19 - DOI
    1. Pasaoglu E, Dursun N, Ozyalvacli G, Hacihasanoglu E, Behzatoglu K, Calay O (2015) Comparison of World Health Organization 2000/2004 and World Health Organization 2010 classifications for gastrointestinal and pancreatic neuroendocrine tumors. Ann Diagn Pathol 19(2):81–87 - DOI
    1. Kim JY, Hong SM, Ro JY (2017) Recent updates on grading and classification of neuroendocrine tumors. Ann Diagn Pathol 29:11–16. https://doi.org/10.1016/j.anndiagpath.2017.04.005 - DOI - PubMed

Publication types

Associated data

LinkOut - more resources