CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory
- PMID: 33523886
- PMCID: PMC7806215
- DOI: 10.1126/sciadv.abe1341
CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory
Abstract
Ferroelectric memory has been substantially researched for several decades as its potential to obtain higher speed, lower power consumption, and longer endurance compared to conventional flash memory. Despite great deal of effort to develop ferroelectric memory based on perovskite oxides on Si, formation of unwanted interfacial layer substantially compromises the performance of the ferroelectric memory. Furthermore, three-dimensional (3D) integration has been unimaginable because of high processing temperature, non-CMOS compatibility, difficulty in scaling, and complex compositions of perovskite oxides. Here, we demonstrate a unique strategy to tackle critical issues by applying hafnia-based ferroelectrics and oxide semiconductors. Thus, it is possible to avoid the formation of interfacial layer that finally allows unprecedented Si-free 3D integration of ferroelectric memory. This strategy yields memory performance that could be achieved neither by the conventional flash memory nor by the previous perovskite ferroelectric memories. Device simulation confirms that this strategy can realize ultrahigh-density 3D memory integration.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures






References
-
- S. J. Whang, K. H. Lee, D. G. Shin, B. Y. Kim, M. S. Kim, J. H. Bin, J. H. Han, S. J. Kim, B. M. Lee, Y. K. Jung, S. Y. Cho, C. H. Shin, H. S. Yoo, S. M. Choi, K. Hong, S. Aritome, S. K. Park, S. J. Hong, Novel 3-dimensional dual control-gate with surrounding floating-gate (DC-SF) NAND flash cell for 1 Tb file storage application, in 2010 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 29.7.1-29.7.4.
-
- Kim C., Kim D., Jeong W., Kim H., Park I. H., Park H., Lee J., Park J., Ahn Y., Lee J. Y., Kim S., Yoon H., Yu J. D., Choi N., Kim N., Jang H., Park J., Song S., Park Y., Bang J., Hong S., Choi Y., Kim M., Kim H., Kwak P., Ihm J., Byeon D. S., Lee J., Park K., Kyung K., A 512-Gb 3-b/Cell 64-stacked WL 3-D-NAND flash memory. IEEE J. Solid-State Circuits 53, 124–133 (2018).
-
- Lee C.-H., Hur S.-H., Shin Y.-C., Choi J.-H., Park D.-G., Kim K., Charge-trapping device structure of SiO2∕SiN∕high-k dielectric Al2O3 for high-density flash memory. Appl. Phys. Lett. 86, 152908 (2005).
-
- He W., Pu J., Chan D. S. H., Cho B. J., Performance improvement in charge-trap flash memory using lanthanum-based high-κ blocking oxide. IEEE Trans. Electron Devices 56, 2746–2751 (2009).
-
- J. Jang, H.-S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J. Jeong, B. Son, D. W. Kim, K. Kim, J. Shim, J. S. Lim, K. Kim, S. Y. Yi, J. Lim, D. Chung, H.-C. Moon, S. Hwang, J.-W. Lee, Y.-H. Son, U. Chung, W.-S. Lee, Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory, in 2009 IEEE Symposium on VLSI Technology (VLSIT) (IEEE, 2009), pp. 192–193.
LinkOut - more resources
Full Text Sources
Other Literature Sources