Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands
- PMID: 33525099
- DOI: 10.3934/mbe.2021022
Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands
Abstract
An efficient management and better scheduling by the power companies are of great significance for accurate electrical load forecasting. There exists a high level of uncertainties in the load time series, which is challenging to make the accurate short-term load forecast (STLF), medium-term load forecast (MTLF), and long-term load forecast (LTLF). To extract the local trends and to capture the same patterns of short, and medium forecasting time series, we proposed long short-term memory (LSTM), Multilayer perceptron, and convolutional neural network (CNN) to learn the relationship in the time series. These models are proposed to improve the forecasting accuracy. The models were tested based on the real-world case by conducting detailed experiments to validate their stability and practicality. The performance was measured in terms of squared error, Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). To predict the next 24 hours ahead load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.5160), MLP with MAPE (4.97), MAE (104.33) and RMSE (133.92). To predict the next 72 hours ahead of load forecasting, the lowest prediction error was obtained using LSTM with R2 (0.7153), MPL with MAPE (7.04), MAE (125.92), RMSE (188.33). Likewise, to predict the next one week ahead load forecasting, the lowest error was obtained using CNN with R2 (0.7616), MLP with MAPE (6.162), MAE (103.156), RMSE (150.81). Moreover, to predict the next one-month load forecasting, the lowest prediction error was obtained using CNN with R2 (0.820), MLP with MAPE (5.18), LSTM with MAE (75.12) and RMSE (109.197). The results reveal that proposed methods achieved better and stable performance for predicting the short, and medium-term load forecasting. The findings of the STLF indicate that the proposed model can be better implemented for local system planning and dispatch, while it will be more efficient for MTLF in better scheduling and maintenance operations.
Keywords: Short-term load forecast; artificial intelligence; convolutional neural networks; deep neural networks; long short-term memory networks.
Similar articles
-
A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.J Med Internet Res. 2021 May 20;23(5):e27806. doi: 10.2196/27806. J Med Internet Res. 2021. PMID: 33900932 Free PMC article.
-
Multi-step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model enhanced by Boruta-XGBoost feature selection algorithm.Sci Rep. 2024 Jul 1;14(1):15051. doi: 10.1038/s41598-024-65837-0. Sci Rep. 2024. PMID: 38951605 Free PMC article.
-
Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.Results Phys. 2021 Aug;27:104495. doi: 10.1016/j.rinp.2021.104495. Epub 2021 Jun 26. Results Phys. 2021. PMID: 34221854 Free PMC article.
-
Application of machine learning in the prediction of COVID-19 daily new cases: A scoping review.Heliyon. 2021 Oct;7(10):e08143. doi: 10.1016/j.heliyon.2021.e08143. Epub 2021 Oct 11. Heliyon. 2021. PMID: 34660935 Free PMC article.
-
An Insight of Deep Learning Based Demand Forecasting in Smart Grids.Sensors (Basel). 2023 Jan 28;23(3):1467. doi: 10.3390/s23031467. Sensors (Basel). 2023. PMID: 36772509 Free PMC article. Review.
LinkOut - more resources
Full Text Sources
Other Literature Sources