Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 28;13(2):423.
doi: 10.3390/nu13020423.

Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis

Affiliations
Review

Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis

Anna Ratsika et al. Nutrients. .

Abstract

Microbes colonize the human body during the first moments of life and coexist with the host throughout the lifespan. Intestinal microbiota and their metabolites aid in the programming of important bodily systems such as the immune and the central nervous system during critical temporal windows of development, with possible structural and functional implications throughout the lifespan. These critical developmental windows perinatally (during the first 1000 days) are susceptible timepoints for insults that can endure long lasting effects on the microbiota-gut-brain axis. Environmental and parental factors like host genetics, mental health, nutrition, delivery and feeding mode, exposure to antibiotics, immune activation and microbiota composition antenatally, are all factors that are able to modulate the microbiota composition of mother and infant and may thus regulate important bodily functions. Among all these factors, early life nutrition plays a pivotal role in perinatal programming and in the modulation of offspring microbiota from birth throughout lifespan. This review aims to present current data on the impact of early life nutrition and microbiota priming of important bodily systems and all the factors influencing the microbial coexistence with the host during early life development.

Keywords: brain development; breast milk; early life; infant formula; microbiota-gut-brain axis; nutrition.

PubMed Disclaimer

Conflict of interest statement

J.F.C. has been an invited speaker at meetings organized by Cátedra ORDESA-University of Granada, Neuropharmex, Mead Johnson, Friesland Campina, has been a consultant for Nestle & Alkermes and has received research funding from Mead Johnson, Cremo, Suntory Wellness, Nutricia and 4D Pharma.

Figures

Figure 1
Figure 1
Early life factors influencing cognitive and microbial development of the child from preconception throughout the first 3 years of life; maternal mental health, lifestyle and metabolic changes affect fetal development. Antibiotic use, infections, environment, dietary habits and mode of delivery impacts the maternal health status, the fetal development during pregnancy and the microbiota and cognitive development of children from birth to at least 3 years. Mode of feeding in early life and solid food introduction influence the microbial and cognitive development of the offspring from birth up to at least 3 years of age.
Figure 2
Figure 2
The effect of early life nutrition during lactation and solid food introduction on the gut microbiota development in the intestinal and the central nervous system; Microbes become more diverse and mature with solid food introduction compared to lactation. Microbes and metabolites in the gut lumen (hormones, neurotransmitters, microbial metabolites, cytokines and nutritional components from milk or solid food) affect the host physiology via the gut-brain axis; they modulate the epithelial barrier, the homeostasis in the lamina propria and the brain. Nutrients, metabolites and microbes in the gut lumen signal to dendritic cells and the enteric neurons which subsequently exchange signals with the immune the circulatory and the central nervous system. The vagus nerve, the immune and the enteric nervous system are all pathways of communication among the microbes, the gut and the brain.
Figure 3
Figure 3
Main nutritional and bioactive components in the different stages of lactation. The quantity of the main nutritional components stays consistent in mature milk, after the 1st month of lactation until the cessation of breastfeeding.

References

    1. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107. - DOI - PMC - PubMed
    1. Borre Y.E., O’Keeffe G.W., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014;20:509–518. doi: 10.1016/j.molmed.2014.05.002. - DOI - PubMed
    1. Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Palacio S.D., Montes S.A., Mancabelli L., et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017;81:e00036-17. doi: 10.1128/MMBR.00036-17. - DOI - PMC - PubMed
    1. Ursell L.K., Metcalf J.L., Parfrey L.W., Knight R. Defining the human microbiome. Nutr. Rev. 2012;70:S38–S44. doi: 10.1111/j.1753-4887.2012.00493.x. - DOI - PMC - PubMed
    1. Pannaraj P.S., Li F., Cerini C., Bender J.M., Yang S., Rollie A., Adisetiyo H., Zabih S., Lincez P.J., Bittinger K., et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017;171:647–654. doi: 10.1001/jamapediatrics.2017.0378. - DOI - PMC - PubMed

LinkOut - more resources