Towards an anti-disease malaria vaccine
- PMID: 33525843
- PMCID: PMC7289038
- DOI: 10.1042/ETLS20170091
Towards an anti-disease malaria vaccine
Abstract
Human infective parasites, such as those that cause malaria, are highly adapted to evade clearance by the immune system. In situations where they must maintain prolonged interactions with molecules of their host, they often use parasite surface protein families. These families are highly diverse to prevent immune recognition, and yet, to promote parasite survival, their members must retain the ability to interact with specific human receptors. One of the best understood of the parasite surface protein families is the PfEMP1 proteins of Plasmodium falciparum. These molecules cause infected erythrocytes to adhere to human receptors found on blood vessel and tissue surfaces. This protects the parasite within from clearance by the spleen and also causes symptoms of severe malaria. The PfEMP1 are exposed to the immune system during infection and are therefore excellent vaccine candidates for use in an approach to prevent severe disease. A key question, however, is whether their extensive diversity precludes them from forming components of the malaria vaccines of the future?
Keywords: malaria; surface protein; vaccine.
© 2017 The Author(s).
Conflict of interest statement
The Authors declare that there are no competing interests associated with the manuscript.
Figures

References
-
- World Health Organsisation World malaria report 2015
LinkOut - more resources
Full Text Sources