Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May 15:331:91-99.
doi: 10.1016/j.ijcard.2021.01.042. Epub 2021 Jan 30.

Effects of long-term right ventricular apex pacing on left ventricular dyssynchrony, morphology and systolic function

Affiliations

Effects of long-term right ventricular apex pacing on left ventricular dyssynchrony, morphology and systolic function

Man-Kun Xin et al. Int J Cardiol. .

Abstract

Background: Right ventricular apex (RVA) is still the most common implanted site in the world. There are a large number of RVA pacing population who have been carrying dual-chamber permanent pacemaker (PPM) over decades. Comparison of left ventricular dyssynchrony, morphology and systolic function between RVA pacing population and healthy population is unknown.

Method: This case-control study enrolled 61 patients suffered from complete atrioventricular block (III°AVB) for replacement of dual-chamber PPM. Then, 61 healthy controls matched with PPM patients in gender, age, follow-up duration and complications were included. The lead impedance, pacing threshold and sensing were compared between at implantation and long-term follow-up. Left ventricular (LV) dyssynchrony, morphology and systolic function were compared between RVA pacing population (RVA group) and healthy population (healthy group) at implantation (baseline) and follow-up. And clarify the predictors of LV systolic function in RVA group at follow-up.

Results: After 112.44 ± 34.94 months of follow-up, comparing with parameters at implantation, atrial lead impedance decreased significantly (690 ± 2397 Ω vs 613 ± 2257 Ω, p = 0.048); atrial pacing threshold has a increased trend and P-wave amplitude has a decreased trend, but there was no statistical differences; while, RVA ventricular lead threshold increased significantly (0.50 ± 0.23 V vs 0.91 ± 0.47 V, p < 0.001), impedance (902 ± 397 Ω vs 680 ± 257 Ω,p < 0.001) and R-wave amplitude (11.71 ± 9.40mv vs 7.00 ± 6.91 mv, p < 0.001) decreased significantly. Compared with healthy group, long-term RVA pacing significantly increased ventricular dyssynchrony (mean QRS duration, 156.21 ± 29.80 ms vs 97.08 ± 15.70 ms, p < 0.001), left atrium diameter (LAD, 40.61 ± 6.15 mm vs 37.49 ± 4.80 mm,p = 0.002), left ventricular end-diastolic diameter (LVEDD, 49.15 ± 5.93 mm vs 46.41 ± 3.80 mm,p = 0.003), left ventricular hypertrophy (LVMI, 121.86 ± 41.52 g/m2 vs 98.41 ± 25.29 g/m2,p < 0.001), significantly deteriorated degree of tricuspid regurgitation (p < 0.001), and significantly decreased left ventricular ejection fraction (LVEF, 61.38 ± 8.10% vs 64.64 ± 5.85%, p = 0.012), but after long-term RVA pacing, the mean LVEF was still more than 50%. Long-term RVA group LVEF was negatively correlated with preimplantation LVMI (B = -0.055,t = -2.244,p = 0.029), LVMI at follow-up (B = -0.081,t = -3.864,p = 0.000) and tricuspid regurgitation at follow-up (B = -3.797,t = -3.599,p = 0.001).

Conclusion: In conclusion, although long-term RVA pacing has significantly effects on left ventricular dyssynchrony, morphology and systolic function in III°AVB patients, the mean LVEF is still >50%. High preimplantation LVMI can predict the decline of LVEF.

Keywords: Left heart morphology; Right ventricular apex pacing; Systolic function; Ventricular dyssynchrony.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that there is no conflict of interest.

MeSH terms

LinkOut - more resources