Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 3;19(1):35.
doi: 10.1186/s12916-021-01906-9.

The importance of supplementary immunisation activities to prevent measles outbreaks during the COVID-19 pandemic in Kenya

Collaborators, Affiliations

The importance of supplementary immunisation activities to prevent measles outbreaks during the COVID-19 pandemic in Kenya

C N Mburu et al. BMC Med. .

Abstract

Background: The COVID-19 pandemic has disrupted routine measles immunisation and supplementary immunisation activities (SIAs) in most countries including Kenya. We assessed the risk of measles outbreaks during the pandemic in Kenya as a case study for the African Region.

Methods: Combining measles serological data, local contact patterns, and vaccination coverage into a cohort model, we predicted the age-adjusted population immunity in Kenya and estimated the probability of outbreaks when contact-reducing COVID-19 interventions are lifted. We considered various scenarios for reduced measles vaccination coverage from April 2020.

Results: In February 2020, when a scheduled SIA was postponed, population immunity was close to the herd immunity threshold and the probability of a large outbreak was 34% (8-54). As the COVID-19 contact restrictions are nearly fully eased, from December 2020, the probability of a large measles outbreak will increase to 38% (19-54), 46% (30-59), and 54% (43-64) assuming a 15%, 50%, and 100% reduction in measles vaccination coverage. By December 2021, this risk increases further to 43% (25-56), 54% (43-63), and 67% (59-72) for the same coverage scenarios respectively. However, the increased risk of a measles outbreak following the lifting of all restrictions can be overcome by conducting a SIA with ≥ 95% coverage in under-fives.

Conclusion: While contact restrictions sufficient for SAR-CoV-2 control temporarily reduce measles transmissibility and the risk of an outbreak from a measles immunity gap, this risk rises rapidly once these restrictions are lifted. Implementing delayed SIAs will be critical for prevention of measles outbreaks given the roll-back of contact restrictions in Kenya.

Keywords: COVID-19; Measles; Outbreak; Supplementary immunisation activities; Vaccination coverage.

PubMed Disclaimer

Conflict of interest statement

All authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Age-stratified population immunity profile. Estimated age-stratified proportion of the Kilifi County population who were immune to measles infection in August 2019 from data. Antibody concentrations ≥ 0.12 IU/ml were defined as protective. Confidence bounds displayed (in red) are the 95% quantiles of a nonparametric bootstrap that is used to propagate uncertainty into the modelling framework. MCV1 is recommended to be administered at 9 months as per the Kenyan immunisation schedule and MCV2 from 18 months
Fig. 2
Fig. 2
Monthly projected age-adjusted immunity profiles from September 2019 to December 2021. The changes in coverage took effect in April 2020. The black dotted line shows the herd immunity threshold for measles before the COVID-19 physical distancing measures, 0.93[0.92-0.94] and the brown dotted line shows the herd immunity threshold during COVID-19 physical distancing measures, 0.86[0.83–0.89], assuming the lockdown measures are still in effect. The bold lines and shaded region in each scenario, i.e. a. no reduction, b. 15% reduction, c. 50% reduction, and d. 100% reduction, indicate the median estimates and the uncertainty of the predicted immunity quantified as the 95% quantiles of the bootstrap analysis. There was a quick decline of predicted immunity over the study period that was based on assumed reduction in routine coverage
Fig. 3
Fig. 3
Probability of a large measles outbreak sparked by a single infected individual. Outbreak probability was calculated using the predicted immunity and herd immunity threshold before (red) and during (green) COVID-19 movement restriction measures. Zero probability indicates no possibility of an outbreak. The bold lines and shaded region in each scenario, i.e. a. no reduction, b. 15% reduction, c. 50% reduction, and d. 100% reduction, indicate the median estimates of outbreak risk and the uncertainty quantified as the 95% quantiles of the bootstrap analysis. The risk of a large measles outbreak from the introduction of a single infectious individual increased quickly based on the level of impairment of routine vaccination coverage
Fig. 4
Fig. 4
Probability of a single infectious person seeding a large outbreak before (none) and after implementing a SIA in children 9 months to 5 years old (U5) and in 9 months to 15 years old (U15) at different timepoints post-lockdown (normal transmission) and during lockdown (50% transmission reduction). Outbreak probability was calculated by comparing the proportion immune with the herd immunity threshold. The shaded area is the median estimate of the outbreak risk and the error bars indicate the uncertainty in outbreak risk quantified as the 95% quantiles of the bootstrap analysis. In all the scenarios, i.e. a. No reduction, b. 15% reduction, c. 50% reduction, and d. 100% reduction, the risk of a large measles outbreak would be largely mitigated through delivery of a SIA among children < 5 years old or < 15 years old

References

    1. Why Kenyans are begging their president for freedom. BBC News. 2020. https://www.bbc.com/news/world-africa-52977771. Accessed 11 June 2020.
    1. COVID-19 Dampens Kenya’s Economic Outlook as Government Scales up Safety Net Measures. https://www.worldbank.org/en/news/press-release/2020/04/29/covid-19-damp.... Accessed 25 Aug 2020.
    1. Brand SPC, Aziza R, Kombe IK, et al. Forecasting the scale of the COVID-19 epidemic in Kenya. medRxiv 2020: 2020.04.09.20059865.
    1. Nelson R. COVID-19 disrupts vaccine delivery. Lancet Infect Dis. 2020;20(5):546. doi: 10.1016/S1473-3099(20)30304-2. - DOI - PMC - PubMed
    1. Abbas K, Procter SR, van Zandvoort K, et al. Routine childhood immunisation during the COVID-19 pandemic in Africa: a benefit-risk analysis of health benefits versus excess risk of SARS-CoV-2 infection. Lancet Glob Health. 2020;8(10):e1264–72. - PMC - PubMed

Publication types

Substances