Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul-Sep;15(3):190-198.
doi: 10.4103/jpn.JPN_159_18. Epub 2020 Nov 6.

Neonatal Seizures and Future Epilepsy: Predictive Value of Perinatal Risk Factors, Electroencephalography, and Imaging

Affiliations

Neonatal Seizures and Future Epilepsy: Predictive Value of Perinatal Risk Factors, Electroencephalography, and Imaging

Tugba Hirfanoglu et al. J Pediatr Neurosci. 2020 Jul-Sep.

Abstract

Context: There are limited data in the literature about the relationship between neonatal seizures and subsequent epilepsy.

Aims: This study aimed to identify the predictive value of perinatal factors, etiologies, electroencephalography (EEG), and cranial ultrasonography (USG) for future epilepsy after neonatal seizures.

Materials and methods: A total of 92 children with epilepsy who had seizures during their neonatal period were retrospectively evaluated whether the contribution of perinatal, natal, and postnatal risk factors confining clinical, laboratory, EEG, and imaging to subsequent epilepsy. Chi-square, uni, and multivariate logistic regression were applied to find out predictive factors for subsequent epilepsy.

Results: The rate of epilepsy was 57.6 % during 1-6 years follow-up. Birth weight, Apgar scores at first and fifth minutes, resuscitation history, abnormal neurological examination, etiology, response to the treatment, abnormal EEG, or USG findings were the most important risk factors for future epilepsy in univariate analysis (P < 0.05). Furthermore, asphyxia, fifth minute Apgar scores, response to the treatment, USG, and EEG were independent predictors (P < 0.05) for subsequent epilepsy in multivariate logistic regression. No relationship was found between subsequent epilepsy and mode of delivery, seizure onset time, and seizure types (P > 0.05).

Conclusion: Although there are recent promising and advanced techniques in neonatal intensive care units, asphyxia is still one of the most important risk factors for not only poor neurological conditions but also for future epilepsy after neonatal seizures. Apgar scores, treatment with multiple antiepileptic drugs, poor background EEG activity, and abnormal neuroimaging seem to have strong predictive values for developing subsequent epilepsy. Therefore, patients with a history of neonatal seizures should be closely followed up to decrease the risk of long-term outcomes and early detection of epilepsy.

Keywords: Epilepsy; newborns; perinatal injury; risk factors; seizures.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

References

    1. Saliba RM, Annegers JF, Waller DK, Tyson JE, Mizrahi EM. Incidence of neonatal seizures in Harris County, Texas, 1992-1994. Am J Epidemiol. 1999;150:763–9. - PubMed
    1. Ronen GM, Penney S, Andrews W. The epidemiology of clinical neonatal seizures in newfoundland: a population-based study. J Pediatr. 1999;134:71–5. - PubMed
    1. Lanska MJ, Lanska DJ, Baumann RJ, Kryscio RJ. A population-based study of neonatal seizures in Fayette County, Kentucky. Neurology. 1995;45:724–32. - PubMed
    1. Tekgul H, Gauvreau K, Soul J, Murphy L, Robertson R, Stewart J, et al. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics. 2006;117:1270–80. - PubMed
    1. Yıldız EP, Tatlı B, Ekici B, Eraslan E, Aydınlı N, Calışkan M, et al. Evaluation of etiologic and prognostic factors in neonatal convulsions. Pediatr Neurol. 2012;47:186–92. - PubMed