Molecular basis for control of antibiotic production by a bacterial hormone
- PMID: 33536618
- DOI: 10.1038/s41586-021-03195-x
Molecular basis for control of antibiotic production by a bacterial hormone
Abstract
Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR-AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR-operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.
Similar articles
-
2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining.Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17510-5. doi: 10.1073/pnas.0805530105. Epub 2008 Nov 6. Proc Natl Acad Sci U S A. 2008. PMID: 18988741 Free PMC article.
-
Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor.Mol Microbiol. 2009 Feb;71(3):763-78. doi: 10.1111/j.1365-2958.2008.06560.x. Epub 2008 Dec 1. Mol Microbiol. 2009. PMID: 19054329
-
Structural and genomic DNA analysis of the putative TetR transcriptional repressor SCO7518 from Streptomyces coelicolor A3(2).FEBS Lett. 2014 Nov 28;588(23):4311-8. doi: 10.1016/j.febslet.2014.09.037. Epub 2014 Oct 8. FEBS Lett. 2014. PMID: 25305383
-
Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways.J Ind Microbiol Biotechnol. 2014 Feb;41(2):219-32. doi: 10.1007/s10295-013-1383-2. Epub 2013 Dec 10. J Ind Microbiol Biotechnol. 2014. PMID: 24322202 Review.
-
Molecular regulation of antibiotic biosynthesis in streptomyces.Microbiol Mol Biol Rev. 2013 Mar;77(1):112-43. doi: 10.1128/MMBR.00054-12. Microbiol Mol Biol Rev. 2013. PMID: 23471619 Free PMC article. Review.
Cited by
-
Insights into Streptomyces coelicolor A3(2) growth and pigment formation with high-throughput online monitoring.Eng Life Sci. 2022 Apr 28;23(1):e2100151. doi: 10.1002/elsc.202100151. eCollection 2023 Jan. Eng Life Sci. 2022. PMID: 36619878 Free PMC article.
-
Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation.Biochem Soc Trans. 2021 Dec 17;49(6):2711-2726. doi: 10.1042/BST20210674. Biochem Soc Trans. 2021. PMID: 34854920 Free PMC article. Review.
-
Identification of γ-butyrolactone signalling molecules in diverse actinomycetes using resin-assisted isolation and chemoenzymatic synthesis.RSC Chem Biol. 2025 Feb 25;6(4):630-641. doi: 10.1039/d5cb00007f. eCollection 2025 Apr 2. RSC Chem Biol. 2025. PMID: 40046449 Free PMC article.
-
Discovery of a widespread chemical signalling pathway in the Bacteroidota.Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09418-9. Online ahead of print. Nature. 2025. PMID: 40836091
-
Molecular basis for coordinating secondary metabolite production by bacterial and plant signaling molecules.J Biol Chem. 2022 Jun;298(6):102027. doi: 10.1016/j.jbc.2022.102027. Epub 2022 May 11. J Biol Chem. 2022. PMID: 35568198 Free PMC article.
References
-
- Barka, E. A. et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016). - DOI
-
- Cuthbertson, L. & Nodwell, J. R. The TetR family of regulators. Microbiol. Mol. Biol. Rev. 77, 440–475 (2013). - DOI
-
- Corre, C., Song, L., O’Rourke, S., Chater, K. F. & Challis, G. L. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl Acad. Sci. USA 105, 17510–17515 (2008). - DOI
-
- Flärdh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49 (2009). - DOI
-
- van der Heul, H. U., Bilyk, B. L., McDowall, K. J., Seipke, R. F. & van Wezel, G. P. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep. 35, 575–604 (2018). - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical