Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Feb;590(7844):47-56.
doi: 10.1038/s41586-020-03167-7. Epub 2021 Feb 3.

Developing fibrillated cellulose as a sustainable technological material

Affiliations
Review

Developing fibrillated cellulose as a sustainable technological material

Tian Li et al. Nature. 2021 Feb.

Abstract

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.

PubMed Disclaimer

References

    1. Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). A critical review on structure–property relationships in cellulose nanomaterials. - PubMed - DOI
    1. Isogai, A. Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B 94, 161–179 (2018). - DOI
    1. Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). The first paper on TEMPO treatment of nanocellulose. - PubMed - DOI
    1. Chen, C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020). - DOI
    1. Isogai, A. Present situation and future prospects of Nanocellulose R&D in Japan. In 2018 Int. Conf. Nanotechnology for Renewable Materials (18NANO) (TAPPI, 2018).

LinkOut - more resources