Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 15:597:120326.
doi: 10.1016/j.ijpharm.2021.120326. Epub 2021 Feb 1.

Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT

Affiliations

Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT

Timo Schoppa et al. Int J Pharm. .

Abstract

Although nanoparticles (NPs) bear a great potential in tumour therapy, just a few nanosized drug delivery systems are commercially available. Besides their advantages like passive drug targeting and stable embedment of lipophilic active pharmaceutical ingredients, targeted drug release is a major challenge for a safe therapy. While drug release of commonly used materials depends on physiological factors, nanoparticles prepared by using stimuli responsive polymers offer a promising approach. External irradiation of light-sensitive nanoparticles enables local drug release, resulting in selective accumulation and consequently more effective treatment with less side effects. In this study light-responsive nanoparticles based on a new innovative light-responsive polyester (Nip-SLrPE) combined with poly(DL-lactide-co-glycolide) (PLGA) were prepared and examined for their physicochemical characteristics and light-triggered properties. As model drug the photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorine (mTHPC) was incorporated and light-depending drug release was investigated. Furthermore, cytotoxic potential of selected formulations for PDT and intracellular accumulation of mTHPC were evaluated. In conclusion, nanoparticles based on the new light-sensitive Nip-SLrPE showed auspicious light-responsive properties, resulting in promising results for a smart drug delivery system.

Keywords: Controlled drug release; HT-29 cells; Light-responsive polymer; Nanoparticles; PLGA; Photodynamic therapy.

PubMed Disclaimer