Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 1:164:42-50.
doi: 10.1016/j.theriogenology.2021.01.008. Epub 2021 Jan 21.

In vitro maturation on ovarian granulosa cells encapsulated in agarose matrix improves developmental competence of porcine oocytes

Affiliations

In vitro maturation on ovarian granulosa cells encapsulated in agarose matrix improves developmental competence of porcine oocytes

Ji Eun Park et al. Theriogenology. .

Abstract

In vivo, mammalian oocytes are surrounded by granulosa cells (GCs) that exist in a three-dimensional (3D) microenvironment with soft stiffness. The GCs play an important role for the in vivo growth and development of oocytes, through bidirectional communication between oocytes and GCs. To mimic the cellular microenvironment of a 3D organized follicle, this study designed a co-culture system using porcine ovarian GCs (pGCs) encapsulated in agarose matrix for in vitro maturation (IVM) of pig oocytes. We report the effects of our newly designed co-culture system on IVM and development of pig oocytes. Immature cumulus-oocyte-complexes (COCs) were matured on a 1% (w/v) agarose matrix encapsulated without or with pGCs. The number of pGCs within the agarose matrix was optimized by analyzing the in vitro development of parthenogenetic embryos. Moreover, the role of the ovarian stromal pGCs as feeder cells was assessed by analyzing the PA embryonic development. Subsequently, the effect of pGCs encapsulated in a 3D agarose matrix was evaluated for the developmental competence of pig oocytes by analyzing blastocyst formation after parthenogenetic activation (PA), intra-oocyte GSH and ROS contents, expression levels of BMP15 and BAX, TUNEL (terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labeling) assay, protein expression levels of BMP15, and intra-oocyte ATP levels. The optimized number of pGCs (5 × 104 cells/well) in a 3D agarose matrix led to a significantly higher blastocyst formation, increased BMP15 gene and protein expression, and intra-oocyte ATP levels; moreover, it induced significantly lower intra-oocyte ROS contents, pro-apoptotic BAX gene expression, and apoptotic index, compared to control. Our results demonstrate that application of pGCs as feeder cells encapsulated in the agarose matrix for IVM effectively increases the developmental competence of porcine oocytes.

Keywords: Agarose; Embryonic development; Granulosa cells; Microenvironment; Pig.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None of the authors have any conflicts of interest to declare.

Similar articles

Cited by

LinkOut - more resources