Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges
- PMID: 33543536
- DOI: 10.1002/adma.202004446
Nonlinear Photonics Using Low-Dimensional Metal-Halide Perovskites: Recent Advances and Future Challenges
Abstract
Low-dimensional metal-halide perovskites have exhibited significantly superior nonlinear optical properties compared to traditional semiconductor counterparts, thanks to their peculiar physical and electronic structures. Their exceptional nonlinear optical characteristics make them excellent candidates for revolutionizing widespread applications. However, the research of nonlinear photonics based on low-dimensional metal-halide perovskites is in its infancy. There is a lack of comprehensive and in-depth summary of this research realm. Here, the state-of-the-art research progress related to third-and higher-order nonlinear optical properties of low-dimensional metal-halide perovskites with diverse crystal structures from 3D down to 0D, together with their practical applications, is summarized comprehensively. Critical discussions are offered on the fundamental mechanisms beneath their exceptional nonlinear optical performance from the physics viewpoint, attempting to disclose the role of intrinsic attributes (e.g., composition, bandgap, size, shape, and structure) and external modulation strategies (e.g., developing core-shell structures, transition metal ion doping, and hybridization with dielectric microspheres) in tuning the response. Additionally, their potential applications in nonlinear photonics, nonlinear optoelectronics, and biophotonics are systematically and thoroughly summed up and categorized. Lastly, insights into the current technical challenges and future research opportunities of nonlinear photonics based on low-dimensional metal-halide perovskites are provided.
Keywords: biophotonic applications; low-dimensional metal-halide perovskites; modulation strategies; nonlinear photonics; optoelectronics.
© 2021 Wiley-VCH GmbH.
References
-
- E. Hecht, Opitcs, Pearson Education Limited, Harlow, UK 2017.
-
- R. W. Boyd, Nonlinear Optics, Elsevier, Rochester, NY, USA 2007.
-
- Y. R. Shen, The Principles of Nonlinear Optics, John Wiley & Sons, New York 1984.
-
- R. L. Sutherland, Handbook of Nonlinear Optics, Marcel Dekker, New York 2003.
-
- T. C. Sum, N. Mathews, Energy Environ. Sci. 2014, 7, 2518.
Publication types
Grants and funding
- 2019YFB2203503/State Key Research Development Program of China
- 61905078/National Natural Science Foundation of China
- 61875138/National Natural Science Foundation of China
- U1801254/National Natural Science Foundation of China
- 61961136001/National Natural Science Foundation of China
- 2019050001/Science and Technology Program of Guangzhou
- Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme
- 2019A1515011136/Basic and Applied Basic Research Foundation of Guangdong Province
- JCYJ20170811093453105/Science and Technology Innovation Commission of Shenzhen
- JCYJ20180307164612205/Science and Technology Innovation Commission of Shenzhen
- GJHZ20180928160209731/Science and Technology Innovation Commission of Shenzhen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- Guangdong Provincial Key Laboratory of Laser Life Science
- 201805010002/Guangzhou Key Laboratory of Spectral Analysis and Functional Probes
- Instrumental Analysis Center of Shenzhen University
LinkOut - more resources
Full Text Sources
Other Literature Sources