Thiol-based redox switches in the major pathogen Staphylococcus aureus
- PMID: 33544504
- DOI: 10.1515/hsz-2020-0272
Thiol-based redox switches in the major pathogen Staphylococcus aureus
Abstract
Staphylococcus aureus is a major human pathogen, which encounters reactive oxygen, nitrogen, chlorine, electrophile and sulfur species (ROS, RNS, RCS, RES and RSS) by the host immune system, during cellular metabolism or antibiotics treatments. To defend against redox active species and antibiotics, S. aureus is equipped with redox sensing regulators that often use thiol switches to control the expression of specific detoxification pathways. In addition, the maintenance of the redox balance is crucial for survival of S. aureus under redox stress during infections, which is accomplished by the low molecular weight (LMW) thiol bacillithiol (BSH) and the associated bacilliredoxin (Brx)/BSH/bacillithiol disulfide reductase (YpdA)/NADPH pathway. Here, we present an overview of thiol-based redox sensors, its associated enzymatic detoxification systems and BSH-related regulatory mechanisms in S. aureus, which are important for the defense under redox stress conditions. Application of the novel Brx-roGFP2 biosensor provides new insights on the impact of these systems on the BSH redox potential. These thiol switches of S. aureus function in protection against redox active desinfectants and antimicrobials, including HOCl, the AGXX® antimicrobial surface coating, allicin from garlic and the naphthoquinone lapachol. Thus, thiol switches could be novel drug targets for the development of alternative redox-based therapies to combat multi-drug resistant S. aureus isolates.
Keywords: HOCl; ROS; Staphylococcus aureus; bacillithiol; electrophiles; thiol switches.
© 2020 Nico Linzner et al., published by De Gruyter, Berlin/Boston.
Similar articles
-
Staphylococcus aureus Uses the Bacilliredoxin (BrxAB)/Bacillithiol Disulfide Reductase (YpdA) Redox Pathway to Defend Against Oxidative Stress Under Infections.Front Microbiol. 2019 Jun 18;10:1355. doi: 10.3389/fmicb.2019.01355. eCollection 2019. Front Microbiol. 2019. PMID: 31275277 Free PMC article.
-
Staphylococcus aureus responds to allicin by global S-thioallylation - Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress.Free Radic Biol Med. 2019 Aug 1;139:55-69. doi: 10.1016/j.freeradbiomed.2019.05.018. Epub 2019 May 20. Free Radic Biol Med. 2019. PMID: 31121222
-
Real-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen Staphylococcus aureus Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor.Antioxid Redox Signal. 2017 May 20;26(15):835-848. doi: 10.1089/ars.2016.6733. Epub 2016 Aug 11. Antioxid Redox Signal. 2017. PMID: 27462976 Free PMC article.
-
Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.Free Radic Biol Med. 2018 Nov 20;128:84-96. doi: 10.1016/j.freeradbiomed.2018.02.018. Epub 2018 Feb 15. Free Radic Biol Med. 2018. PMID: 29454879 Review.
-
The Role of Bacillithiol in Gram-Positive Firmicutes.Antioxid Redox Signal. 2018 Feb 20;28(6):445-462. doi: 10.1089/ars.2017.7057. Epub 2017 Apr 24. Antioxid Redox Signal. 2018. PMID: 28301954 Free PMC article. Review.
Cited by
-
The Antimicrobial Activity of the AGXX® Surface Coating Requires a Small Particle Size to Efficiently Kill Staphylococcus aureus.Front Microbiol. 2021 Aug 12;12:731564. doi: 10.3389/fmicb.2021.731564. eCollection 2021. Front Microbiol. 2021. PMID: 34456898 Free PMC article.
-
Core-Shell Polydopamine/Cu Nanometer Rods Efficiently Deactivate Microbes by Mimicking Chloride-Activated Peroxidases.ACS Omega. 2022 Aug 17;7(34):29984-29994. doi: 10.1021/acsomega.2c02986. eCollection 2022 Aug 30. ACS Omega. 2022. PMID: 36061688 Free PMC article.
-
Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes.J Leukoc Biol. 2022 Oct;112(4):591-605. doi: 10.1002/JLB.4HI1021-538RR. Epub 2022 May 27. J Leukoc Biol. 2022. PMID: 35621076 Free PMC article.
-
Understanding the Role of the Antioxidant Drug Erdosteine and Its Active Metabolite on Staphylococcus aureus Methicillin Resistant Biofilm Formation.Antioxidants (Basel). 2021 Nov 29;10(12):1922. doi: 10.3390/antiox10121922. Antioxidants (Basel). 2021. PMID: 34943025 Free PMC article.
-
The Old Yellow Enzyme OfrA Fosters Staphylococcus aureus Survival via Affecting Thiol-Dependent Redox Homeostasis.Front Microbiol. 2022 May 17;13:888140. doi: 10.3389/fmicb.2022.888140. eCollection 2022. Front Microbiol. 2022. PMID: 35656003 Free PMC article.
References
-
- Antelmann, H., Hecker, M., and Zuber, P. (2008). Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis. Expert Rev. Proteomics 5: 77–90, https://doi.org/10.1586/14789450.5.1.77.
-
- Antelmann, H. and Helmann, J.D. (2011). Thiol-based redox switches and gene regulation. Antioxid. Redox. Signal 14: 1049–1063, https://doi.org/10.1089/ars.2010.3400.
-
- Arbach, M., Santana, T.M., Moxham, H., Tinson, R., Anwar, A., Groom, M., and Hamilton, C.J. (2019). Antimicrobial garlic-derived diallyl polysulfanes: interactions with biological thiols in Bacillus subtilis. Biochim. Biophys. Acta 1863: 1050–1058, https://doi.org/10.1016/j.bbagen.2019.03.012.
-
- Archer, G.L. (1998). Staphylococcus aureus: a well-armed pathogen. Clin. Infect. Dis. 26: 1179–1181, https://doi.org/10.1086/520289.
-
- Argyrou, A. and Blanchard, J.S. (2004). Flavoprotein disulfide reductases: advances in chemistry and function. Prog. Nucleic Acid Res. Mol. Biol. 78: 89–142, https://doi.org/10.1016/s0079-6603(04)78003-4.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources