Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis
- PMID: 33548150
- DOI: 10.1111/pce.14021
Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis
Abstract
Lateral root formation is coordinated by both endogenous and external factors. As biotic factors, plant growth-promoting rhizobacteria can affect lateral root formation, while the regulation mechanism is unclear. In this study, by applying various marker lines, we found that volatile compounds (VCs) from Bacillus amyloliquefaciens SQR9 induced higher frequency of DR5 oscillation and prebranch site formation, accelerated the development and emergence of the lateral root primordia and thus promoted lateral root development in Arabidopsis. We demonstrated a critical role of auxin on B. amyloliquefaciens VCs-induced lateral root formation via respective mutants and pharmacological experiments. Our results showed that auxin biosynthesis, polar transport and signalling pathway are involved in B. amyloliquefaciens VCs-induced lateral roots formation. We further showed that acetoin, a major component of B. amyloliquefaciens VCs, is less active in promoting root development compared to VC blends from B. amyloliquefaciens, indicating the presence of yet uncharacterized/unknown VCs might contribute to B. amyloliquefaciens effect on lateral root formation. In summary, our study revealed an auxin-dependent mechanism of B. amyloliquefaciens VCs in regulating lateral root branching in a non-contact manner, and further efforts will explore useful VCs to promote plant root development.
Keywords: Bacillus; PGPR; auxin; lateral root; oscillation; prebranch site; volatile compounds.
© 2021 John Wiley & Sons Ltd.
Similar articles
-
Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant.Planta. 2017 Jan;245(1):15-30. doi: 10.1007/s00425-016-2580-9. Epub 2016 Aug 19. Planta. 2017. PMID: 27541497 Free PMC article.
-
The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning.New Phytol. 2016 Mar;209(4):1496-512. doi: 10.1111/nph.13725. Epub 2015 Nov 16. New Phytol. 2016. PMID: 26568541
-
Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles.Protoplasma. 2017 Nov;254(6):2201-2213. doi: 10.1007/s00709-017-1109-9. Epub 2017 Apr 12. Protoplasma. 2017. PMID: 28405774
-
To branch or not to branch: the role of pre-patterning in lateral root formation.Development. 2013 Nov;140(21):4301-10. doi: 10.1242/dev.090548. Development. 2013. PMID: 24130327 Free PMC article. Review.
-
Microbial volatiles as plant growth inducers.Microbiol Res. 2018 Mar;208:63-75. doi: 10.1016/j.micres.2018.01.002. Epub 2018 Jan 31. Microbiol Res. 2018. PMID: 29551213 Review.
Cited by
-
Identification and Surveys of Promoting Plant Growth VOCs from Biocontrol Bacteria Paenibacillus peoriae GXUN15128.Microbiol Spectr. 2023 Jun 15;11(3):e0434622. doi: 10.1128/spectrum.04346-22. Epub 2023 Mar 29. Microbiol Spectr. 2023. PMID: 36988498 Free PMC article.
-
Metagenomic analysis reveals Bacillus cereus OTU8977 as a potential probiotic in promoting walnut growth.BMC Plant Biol. 2025 Jul 2;25(1):839. doi: 10.1186/s12870-025-06812-3. BMC Plant Biol. 2025. PMID: 40604425 Free PMC article.
-
Progress in Transcriptomics and Metabolomics in Plant Responses to Abiotic Stresses.Curr Issues Mol Biol. 2025 Jun 5;47(6):421. doi: 10.3390/cimb47060421. Curr Issues Mol Biol. 2025. PMID: 40699820 Free PMC article. Review.
-
Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels.Plant Physiol. 2025 Feb 7;197(2):kiae676. doi: 10.1093/plphys/kiae676. Plant Physiol. 2025. PMID: 39719153 Free PMC article.
-
Biofertilizer Industry and Research Developments in China: A Mini-Review.Microb Biotechnol. 2025 May;18(5):e70163. doi: 10.1111/1751-7915.70163. Microb Biotechnol. 2025. PMID: 40411486 Free PMC article. Review.
References
REFERENCES
-
- Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., & Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115(5), 591-602. https://doi.org/10.1016/s0092-8674(03)00924-3
-
- Berg, T. V. D., & Tusscher, K. H. T. (2018). Lateral root priming synergystically arises from root growth and auxin transport dynamics. Biorxiv., 361709. doi:https://doi.org/10.1101/361709
-
- Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., … Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433(7021), 39-44. https://doi.org/10.1038/nature03184
-
- Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R., & Kolter, R. (2001). Fruiting body formation by Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11621-11626. https://doi.org/10.1073/pnas.191384198
-
- Chen, L., Liu, Y., Wu, G., Zhang, N., Shen, Q., & Zhang, R. (2017). Beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance through spermidine production. Molecular Plant-Microbe Interactions, 30(5), 423-432. https://doi.org/10.1094/mpmi-02-17-0027-r
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous