Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr:69:101954.
doi: 10.1016/j.media.2020.101954. Epub 2021 Jan 6.

Surgical planning of pelvic tumor using multi-view CNN with relation-context representation learning

Affiliations
Free article

Surgical planning of pelvic tumor using multi-view CNN with relation-context representation learning

Yang Qu et al. Med Image Anal. 2021 Apr.
Free article

Abstract

Limb salvage surgery of malignant pelvic tumors is the most challenging procedure in musculoskeletal oncology due to the complex anatomy of the pelvic bones and soft tissues. It is crucial to accurately resect the pelvic tumors with appropriate margins in this procedure. However, there is still a lack of efficient and repetitive image planning methods for tumor identification and segmentation in many hospitals. In this paper, we present a novel deep learning-based method to accurately segment pelvic bone tumors in MRI. Our method uses a multi-view fusion network to extract pseudo-3D information from two scans in different directions and improves the feature representation by learning a relational context. In this way, it can fully utilize spatial information in thick MRI scans and reduce over-fitting when learning from a small dataset. Our proposed method was evaluated on two independent datasets collected from 90 and 15 patients, respectively. The segmentation accuracy of our method was superior to several comparing methods and comparable to the expert annotation, while the average time consumed decreased about 100 times from 1820.3 seconds to 19.2 seconds. In addition, we incorporate our method into an efficient workflow to improve the surgical planning process. Our workflow took only 15 minutes to complete surgical planning in a phantom study, which is a dramatic acceleration compared with the 2-day time span in a traditional workflow.

Keywords: Bone tumor segmentation; Convolutional neural network; Deep learning; Limb salvage; Multi-view fusion; Relation-context representation learning.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources