Pneumatic tube transportation of urine samples
- PMID: 33554569
- DOI: 10.1515/cclm-2020-1198
Pneumatic tube transportation of urine samples
Abstract
Objectives: Pneumatic tube transportation of samples is an effective way of reducing turn-around-time, but evidence of the effect of pneumatic tube transportation on urine samples is lacking. We thus wished to investigate the effect of pneumatic tube transportation on various components in urine, in order to determine if pneumatic tube transportation of these samples is feasible.
Methods: One-hundred fresh urine samples were collected in outpatient clinics and partitioned with one partition being carried by courier to the laboratory, while the other was sent by pneumatic tube system (Tempus600). Both partitions were then analysed for soluble components and particles, and the resulting mean difference and limits of agreement were calculated.
Results: Albumin, urea nitrogen, creatinine, protein and squamous epithelial cells were unaffected by transportation in the Tempus600 system, while bacteria, renal tubular epithelial cells, white blood cells and red blood cells were affected and potassium and sodium may have been affected.
Conclusions: Though pneumatic tube transportation did affect some of the investigated components, in most cases the changes induced were clinically acceptable, and hence samples could be safely transported by the Tempus600 pneumatic tube system. For bacteria, white blood cells and red blood cells local quality demands will determine if pneumatic tube transportation is appropriate.
Keywords: Tempus600; albumin; bacteria; creatinine; leukocytes; pneumatic tube transportation; proteinuria; turn-around-time; urinalysis; urinary tract infection.
© 2020 Walter de Gruyter GmbH, Berlin/Boston.
References
-
- Andersen, I, Mogensen, N, Brandslund, I. Stability of biochemical components in blood samples transported by tempus600/sysmex GLP robot reception system. J Appl Lab Med: An AACC Publication 2017;1:376–86. https://doi.org/10.1373/jalm.2016.021188.
-
- Suchsland, J, Winter, T, Greiser, A, Streichert, T, Otto, B, Mayerle, J, et al.. Extending laboratory automation to the wards: effect of an innovative pneumatic tube system on diagnostic samples and transport time. Clin Chem Lab Med 2017;55:225–30. https://doi.org/10.1515/cclm-2016-0380.
-
- Fernandes, CM, Worster, A, Eva, K, Hill, S, McCallum, C. Pneumatic tube delivery system for blood samples reduces turnaround times without affecting sample quality. J Emerg Nurs 2006;32:139–43. https://doi.org/10.1016/j.jen.2005.11.013.
-
- Guss, DA, Chan, TC, Killeen, JP. The impact of a pneumatic tube and computerized physician order management on laboratory turnaround time. Ann Emerg Med 2008;51:181–5. https://doi.org/10.1016/j.annemergmed.2007.03.010.
-
- Kapoula, GV, Kontou, PI, Bagos, PG. The impact of pneumatic tube system on routine laboratory parameters: a systematic review and meta-analysis. Clin Chem Lab Med 2017;55:1834–44. https://doi.org/10.1515/cclm-2017-0008.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous