Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 24;13(7):8095-8101.
doi: 10.1021/acsami.1c00466. Epub 2021 Feb 8.

Enzymatically Triggered Jack-in-the-Box-like Hydrogels

Affiliations

Enzymatically Triggered Jack-in-the-Box-like Hydrogels

Maria Balk et al. ACS Appl Mater Interfaces. .

Abstract

Enzymes can support the synthesis or degradation of biomacromolecules in natural processes. Here, we demonstrate that enzymes can induce a macroscopic-directed movement of microstructured hydrogels following a mechanism that we call a "Jack-in-the-box" effect. The material's design is based on the formation of internal stresses induced by a deformation load on an architectured microscale, which are kinetically frozen by the generation of polyester locking domains, similar to a Jack-in-the-box toy (i.e., a compressed spring stabilized by a closed box lid). To induce the controlled macroscopic movement, the locking domains are equipped with enzyme-specific cleavable bonds (i.e., a box with a lock and key system). As a result of enzymatic reaction, a transformed shape is achieved by the release of internal stresses. There is an increase in entropy in combination with a swelling-supported stretching of polymer chains within the microarchitectured hydrogel (i.e., the encased clown pops-up with a pre-stressed movement when the box is unlocked). This utilization of an enzyme as a physiological stimulus may offer new approaches to create interactive and enzyme-specific materials for different applications such as an optical indicator of the enzyme's presence or actuators and sensors in biotechnology and in fermentation processes.

Keywords: enzyme; hydrogels; microporous; poly(ε-caprolactone); shape change; stimuli-sensitive materials; switch.

PubMed Disclaimer

LinkOut - more resources