Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May:152:105290.
doi: 10.1016/j.nbd.2021.105290. Epub 2021 Feb 5.

Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system

Affiliations
Free article
Review

Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system

Sheng Yang et al. Neurobiol Dis. 2021 May.
Free article

Abstract

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.

Keywords: Glycolysis; Inflammation; Metabolism; Microglia; Oxidative phosphorylation; Reprogramming.

PubMed Disclaimer

Publication types

LinkOut - more resources