Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 8;21(1):83.
doi: 10.1186/s12870-021-02869-y.

Drought-induced ABA, H2O2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems

Affiliations

Drought-induced ABA, H2O2 and JA positively regulate CmCAD genes and lignin synthesis in melon stems

Wei Liu et al. BMC Plant Biol. .

Abstract

Background: Cinnamyl alcohol dehydrogenase (CAD) is an important enzyme functions at the last step in lignin monomer synthesis pathway. Our previous work found that drought induced the expressions of CmCAD genes and promoted lignin biosynthesis in melon stems.

Results: Here we studied the effects of abscisic acid (ABA), hydrogen peroxide (H2O2) and jasmonic acid (JA) to CmCADs under drought stress. Results discovered that drought-induced ABA, H2O2 and MeJA were prevented efficiently from increasing in melon stems pretreated with fluridone (Flu, ABA inhibitor), imidazole (Imi, H2O2 scavenger) and ibuprofen (Ibu, JA inhibitor). ABA and H2O2 are involved in the positive regulations to CmCAD1, 2, 3, and 5, and JA is involved in the positive regulations to CmCAD2, 3, and 5. According to the expression profiles of lignin biosynthesis genes, ABA, H2O2 and MeJA all showed positive regulations to CmPAL2-like, CmPOD1-like, CmPOD2-like and CmLAC4-like. In addition, positive regulations were also observed with ABA to CmPAL1-like, CmC4H and CmCOMT, with H2O2 to CmPAL1-like, CmC4H, CmCCR and CmLAC17-like, and with JA to CmCCR, CmCOMT, CmLAC11-like and CmLAC17-like. As expected, the signal molecules positively regulated CAD activity and lignin biosynthesis under drought stress. Promoter::GUS assays not only further confirmed the regulations of the signal molecules to CmCAD1~3, but also revealed the important role of CmCAD3 in lignin synthesis due to the strongest staining of CmCAD3 promoter::GUS.

Conclusions: CmCADs but CmCAD4 are positively regulated by ABA, H2O2 and JA under drought stress and participate in lignin synthesis.

Keywords: Abscisic acid; Cinnamyl alcohol dehydrogenase; Drought; Hydrogen peroxide; Jasmonic acid; Lignin; Oriental melon.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Contents of ABA (a, d), H2O2 (b, e) and JA (c, f) in stems of melon seedlings. a-c, changes of ABA, H2O2 and JA contents under 8% PEG6000 treatment. d-f, contents of ABA, H2O2 and JA under PEG and/or inhibitor or scavenger treatments with respect to ABA, H2O2 and JA at peak-value time point according to a-c. Values are the means ± SE of three independent experiments. Different lowercase letters indicate significant differences from control using Duncan’s Multiple Range Test at P< 0.05
Fig. 2
Fig. 2
qRT-PCR analysis the relative expressions of CmCAD genes in stems of melon seedlings regulated by ABA (a-e), H2O2 (f-j) and MeJA (k-o). Values are the means ± SE of three independent experiments. Different lowercase letters indicate significant differences from control using Duncan’s Multiple Range Test (P< 0.05)
Fig. 3
Fig. 3
Heat map depicting expression fold changes of lignin biosynthesis genes in lignin monomer synthesis pathway. Data presented as Log2[abundance in sample/abundance in control]. Data are collected from biological replicates (n = 3)
Fig. 4
Fig. 4
Effects of pretreated with ABA inhibitor fluridone (a), H2O2 scavenger imidazol (b) and MeJA inhibitor ibuprofen (c) on CAD activity in stems of melon seedlings exposed to PEG. Values are the means ± SE of three independent experiments. Different lowercase letters indicate significant differences from control using Duncan’s Multiple Range Test (P< 0.05)
Fig. 5
Fig. 5
Lignin deposition regulated by ABA, H2O2 and JA under PEG treatment. a, c, e, Effects of ABA, H2O2, JA and their corresponding inhibitor or scavenger on lignin contents under PEG treatments. b, d, f, histochemical staining of xylem tissue from the 3rd internode of stems from melon seedlings with phloroglucinol-HCl for lignin observation. mx: metaxylem; px: protoxylem. Different lowercase letters indicate significant differences from control using Duncan’s Multiple Range Test (P< 0.05). Bars=50 μm
Fig. 6
Fig. 6
Histochemical staining (a) and activity detection (b) of GUS driven by promoters with respect to CmCAD13 treated with ABA, H2O2 and MeJA. Different lowercase letters indicate significant differences from control using Duncan’s Multiple Range Test (P< 0.05). ND: not detected; ns: no significance

References

    1. Bonawitz ND, Chapple C. The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype. Annu Rev Genet. 2010;44(1):337–363. doi: 10.1146/annurev-genet-102209-163508. - DOI - PubMed
    1. Boudet AM. Lignin and lignification: selected issues. Plant Physiol Biochem. 2000;38(1):81–96. doi: 10.1016/S0981-9428(00)00166-2. - DOI
    1. Srivastava S, Vishwakarma RK, Arafat YA, Gupta SK, Khan BM. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala. Physiol Mol Biol Plants. 2015;21(2):197–205. doi: 10.1007/s12298-015-0289-z. - DOI - PMC - PubMed
    1. Lee BR, Muneer S, Jung WJ, Avice JC, Ourry A, Kim TH. Mycorrhizal colonization alleviates drought-induced oxidative damage and lignification in the leaves of drought-stressed perennial ryegrass (Lolium perenne) Physiol Plant. 2012;145(3):440–449. doi: 10.1111/j.1399-3054.2012.01586.x. - DOI - PubMed
    1. Li Z, Peng Y, Ma X. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiol Plant. 2013;35(1):213–222. doi: 10.1007/s11738-012-1066-z. - DOI