Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021 Feb 8;25(1):52.
doi: 10.1186/s13054-020-03433-0.

Static compliance of the respiratory system in COVID-19 related ARDS: an international multicenter study

Collaborators, Affiliations
Observational Study

Static compliance of the respiratory system in COVID-19 related ARDS: an international multicenter study

Benoit Vandenbunder et al. Crit Care. .

Abstract

Background: Controversies exist on the nature of COVID-19 related acute respiratory distress syndrome (ARDS) in particular on the static compliance of the respiratory system (Crs). We aimed to analyze the association of Crs with outcome in COVID-19-associated ARDS, to ascertain its determinants and to describe its evolution at day-14.

Methods: In this observational multicenter cohort of patients with moderate to severe Covid-19 ARDS, Crs was measured at day-1 and day-14. Association between Crs or Crs/ideal body weight (IBW) and breathing without assistance at day-28 was analyzed with multivariable logistic regression. Determinants were ascertained by multivariable linear regression. Day-14 Crs was compared to day-1 Crs with paired t-test in patients still under controlled mechanical ventilation.

Results: The mean Crs in 372 patients was 37.6 ± 13 mL/cmH2O, similar to as in ARDS of other causes. Multivariate linear regression identified chronic hypertension, low PaO2/FiO2 ratio, low PEEP, and low tidal volume as associated with lower Crs/IBW. After adjustment on confounders, nor Crs [OR 1.0 (CI 95% 0.98-1.02)] neither Crs/IBW [OR 0.63 (CI 95% 0.13-3.1)] were associated with the chance of breathing without assistance at day-28 whereas plateau pressure was [OR 0.93 (CI 95% 0.88-0.99)]. In a subset of 108 patients, day-14 Crs decreased compared to day-1 Crs (31.2 ± 14.4 mL/cmH2O vs 37.8 ± 11.4 mL/cmH2O, p < 0.001). The decrease in Crs was not associated with day-28 outcome.

Conclusion: In a large multicenter cohort of moderate to severe COVID-19 ARDS, mean Crs was decreased below 40 mL/cmH2O and was not associated with day-28 outcome. Crs decreased between day-1 and day-14 but the decrease was not associated with day-28 outcome.

Keywords: ICU; Mechanical ventilation; Mortality; PEEP; Plateau pressure; Respiratory mechanics; SARS-COV-2.

PubMed Disclaimer

Conflict of interest statement

JT is a part-time employee of bioMérieux, an IVD company, and Hospices Civils de Lyon, a university hospital. SE declares consultancies from Aerogen Ltd, research support from Aerogen Ltd, Fisher & Paykel healthcare, Hamilton medical, travel reimbursements from Aerogen Ltd and Fisher & Paykel. All other authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Distribution of day-1 Crs (a) and day-1 Crs/IBW (b). Crs: compliance of the respiratory system, IBW: ideal body weight
Fig. 2
Fig. 2
Proportion of patients breathing without assistance at day-28 according to Crs (a, p for trend = 0.11) and Pplat (b, p for trend = 0.03) quintiles
Fig. 3
Fig. 3
Relation between day-1 and day-14 Crs (n  = 108). a shows the regression line (continuous) between day-14 and day-1 Crs compared to the y = x (dotted line). b shows the same data according to three day-28 outcomes: patients extubated (empty circles) patients still on mechanical ventilation (grey circles) and patients who died (black circles) and their respective regression lines

References

    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3. - DOI - PMC - PubMed
    1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032. - DOI - PMC - PubMed
    1. Camporota L, Vasques F, Sanderson B, Barrett NA, Gattinoni L. Identification of pathophysiological patterns for triage and respiratory support in COVID-19. Lancet Respir Med. 2020;8(8):752–754. doi: 10.1016/S2213-2600(20)30279-4. - DOI - PMC - PubMed
    1. Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, Chiumello D. COVID-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201(10):1299–1300. doi: 10.1164/rccm.202003-0817LE. - DOI - PMC - PubMed
    1. Li X, Ma X. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care. 2020;24(1):1–5. doi: 10.1186/s13054-020-02911-9. - DOI - PMC - PubMed

Publication types