Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 8;29(1):30.
doi: 10.1186/s13049-021-00846-w.

Effects of COVID-19 on in-hospital cardiac arrest: incidence, causes, and outcome - a retrospective cohort study

Affiliations

Effects of COVID-19 on in-hospital cardiac arrest: incidence, causes, and outcome - a retrospective cohort study

Kevin Roedl et al. Scand J Trauma Resusc Emerg Med. .

Abstract

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), an emerging virus, has caused a global pandemic. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to high hospitalization rates worldwide. Little is known about the occurrence of in-hospital cardiac arrest (IHCA) and high mortality rates have been proposed. The aim of this study was to investigate the incidence, characteristics and outcome of IHCA during the pandemic in comparison to an earlier period.

Methods: This was a retrospective analysis of data prospectively recorded during 3-month-periods 2019 and 2020 at the University Medical Centre Hamburg-Eppendorf (Germany). All consecutive adult patients with IHCA were included. Clinical parameters, neurological outcomes and organ failure/support were assessed.

Results: During the study period hospital admissions declined from 18,262 (2019) to 13,994 (2020) (- 23%). The IHCA incidence increased from 4.6 (2019: 84 IHCA cases) to 6.6 (2020: 93 IHCA cases)/1000 hospital admissions. Median stay before IHCA was 4 (1-9) days. Demographic characteristics were comparable in both periods. IHCA location shifted towards the ICU (56% vs 37%, p < 0.01); shockable rhythm (VT/VF) (18% vs 29%, p = 0.05) and defibrillation were more frequent in the pandemic period (20% vs 35%, p < 0.05). Resuscitation times, rates of ROSC and post-CA characteristics were comparable in both periods. The severity of illness (SAPS II/SOFA), frequency of mechanical ventilation and frequency of vasopressor therapy after IHCA were higher during the 2020 period. Overall, 43 patients (12 with & 31 without COVID-19), presented with respiratory failure at the time of IHCA. The Horowitz index and resuscitation time were significantly lower in patients with COVID-19 (each p < 0.01). Favourable outcomes were observed in 42 and 10% of patients with and without COVID-19-related respiratory failure, respectively.

Conclusion: Hospital admissions declined during the pandemic, but a higher incidence of IHCA was observed. IHCA in patients with COVID-19 was a common finding. Compared to patients with non-COVID-19-related respiratory failure, the outcome was improved.

Keywords: COVID-19; Cardiac arrest; Cardiopulmonary resuscitation; Corona virus disease; In-hospital cardiac arrest; Intensive care unit; Multiple organ failure; SARS-COV-2.

PubMed Disclaimer

Conflict of interest statement

KR, GS, DF, JM, MI, DW and DJ do not report any conflicts of interest related to this article. SK received research support by Ambu, E.T.View Ltd., Fisher & Paykel, Pfizer and Xenios, lecture honorarium from ArjoHuntleigh, Astellas, Astra, Basilea, Bard, Baxter, Biotest, CSL Behring, Cytosorbents, Fresenius, Gilead, MSD, Orion, Pfizer, Philips, Sedana, Sorin, Xenios and Zoll, and consultant honorarium from AMOMED, Astellas, Baxter, Bayer, Fresenius, Gilead, MSD, Pfizer and Xenios. No other potential conflict of interest relevant to this article was reported.

Figures

Fig. 1
Fig. 1
Study flow chart
Fig. 2
Fig. 2
Outcome of patients with severe respiratory failure – stratified to COIVD-19 and non-COVID-19

Comment in

Similar articles

Cited by

References

    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. - DOI - PMC - PubMed
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7. - DOI - PMC - PubMed
    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032. - DOI - PMC - PubMed
    1. WHO. WHO - World Map - COVID-19. 2020 [https://covid19.who.int/ - Accessed online: October, 31st 2020] [Available from: https://covid19.who.int/ - Accessed online: October, 19th 2020].
    1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. 2020;323(16):1545–1546. doi: 10.1001/jama.2020.4031. - DOI - PubMed

MeSH terms

Substances