A sensitive technique for the determination of anion exchange activities in brush-border membrane vesicles. Evidence for two exchangers with different affinities for HCO3- and SITS in rat intestinal epithelium
- PMID: 3355819
- DOI: 10.1016/0005-2736(88)90075-2
A sensitive technique for the determination of anion exchange activities in brush-border membrane vesicles. Evidence for two exchangers with different affinities for HCO3- and SITS in rat intestinal epithelium
Abstract
A large percentage (up to 70%) of 36Cl- influx in brush-border membrane vesicles from rat small intestine under equilibrium exchange conditions was found to be mediated by SITS-inhibitable anion exchange. This Cl-/anion exchange could be measured 10-15-times more sensitive by determining the uptake of trace amounts of 125I- driven by a large Cl- gradient (in greater than out) generated by passing the vesicles through an anion-exchange column. Voltage clamping of the vesicle membrane with K+ and valinomycin did not effect the chloride driven 125I- uptake, showing that the 'overshooting' I- uptake was not mediated by an electrical diffusion potential, as might be generated by the Cl- gradient in the presence of a chloride channel. The Cl-/anion exchange was further characterized in brush-border membrane vesicles from both rat ileum and jejunum by studying the inhibitory action of various anions on the Cl- driven I- uptake. NO3-, Cl-, SCN- and formate at 2 mM could inhibit Cl-/I- exchange for more than 80%. The ileal brush-border membrane vesicles displayed a clear heterogeneity with respect to the inhibitory action of SO2-(4), SITS and HCO-3 on Cl-/I- exchange. Approximately 30% of the Cl-/I- exchange was insensitive to SO2-(4) and showed a relatively low sensitivity to SITS (IC50 = 1 mM) but could be inhibited for 80% by 2 mM HCO-3. Presumably this component represents Cl-/OH- or Cl-/HCO-3 exchange. The residual 70% showed a high sensitivity to SO2-(4) (IC50 = 0.5 mM) and SITS (IC50 = 2.5 microM) but was less sensitive to HCO-3. This part of the exchange activity showed inhibition characteristics very similar to the Cl-/I- exchange in the jejunal vesicles. The latter process was also inhibited for 80% by 2 mM oxalate. As discussed in this paper both exchangers may be involved in the electroneutral transport of NaCl across the apical membrane of the small intestinal villus cell.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
