Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;5(6):546-554.
doi: 10.1038/s41551-020-00667-9. Epub 2021 Feb 8.

Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality

Affiliations

Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality

Alvaro E Ulloa Cerna et al. Nat Biomed Eng. 2021 Jun.

Abstract

Machine learning promises to assist physicians with predictions of mortality and of other future clinical events by learning complex patterns from historical data, such as longitudinal electronic health records. Here we show that a convolutional neural network trained on raw pixel data in 812,278 echocardiographic videos from 34,362 individuals provides superior predictions of one-year all-cause mortality. The model's predictions outperformed the widely used pooled cohort equations, the Seattle Heart Failure score (measured in an independent dataset of 2,404 patients with heart failure who underwent 3,384 echocardiograms), and a machine learning model involving 58 human-derived variables from echocardiograms and 100 clinical variables derived from electronic health records. We also show that cardiologists assisted by the model substantially improved the sensitivity of their predictions of one-year all-cause mortality by 13% while maintaining prediction specificity. Large unstructured datasets may enable deep learning to improve a wide range of clinical prediction models.

PubMed Disclaimer

References

    1. Payne, J. W. Task complexity and contingent processing in decision making: an information search and protocol analysis. Organ. Behav. Hum. Perform. 16, 366–387 (1976). - DOI
    1. Quer, G., Muse, E. D., Nikzad, N., Topol, E. J. & Steinhubl, S. R. Augmenting diagnostic vision with AI. Lancet 390, 221 (2017). - PubMed - PMC - DOI
    1. Jha, S. & Topol, E. J. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 316, 2353–2354 (2016). - PubMed - DOI
    1. Kyriacou, E., Constantinides, A., Pattichis, C., Pattichis, M. & Panayides, A. in Biomedical Signals, Imaging, and Informatics 4th edn (eds Bronzino, J. D. & Peterson, D.) Ch. 64 (CRC Press, 2015).
    1. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

Publication types