Global Network Organization of the Fetal Functional Connectome
- PMID: 33558873
- PMCID: PMC8107792
- DOI: 10.1093/cercor/bhaa410
Global Network Organization of the Fetal Functional Connectome
Abstract
Recent advances in brain imaging have enabled non-invasive in vivo assessment of the fetal brain. Characterizing brain development in healthy fetuses provides baseline measures for identifying deviations in brain function in high-risk clinical groups. We examined 110 resting state MRI data sets from fetuses at 19 to 40 weeks' gestation. Using graph-theoretic techniques, we characterized global organizational features of the fetal functional connectome and their prenatal trajectories. Topological features related to network integration (i.e., global efficiency) and segregation (i.e., clustering) were assessed. Fetal networks exhibited small-world topology, showing high clustering and short average path length relative to reference networks. Likewise, fetal networks' quantitative small world indices met criteria for small-worldness (σ > 1, ω = [-0.5 0.5]). Along with this, fetal networks demonstrated global and local efficiency, economy, and modularity. A right-tailed degree distribution, suggesting the presence of central areas that are more highly connected to other regions, was also observed. Metrics, however, were not static during gestation; measures associated with segregation-local efficiency and modularity-decreased with advancing gestational age. Altogether, these suggest that the neural circuitry underpinning the brain's ability to segregate and integrate information exists as early as the late 2nd trimester of pregnancy and reorganizes during the prenatal period. Significance statement. Mounting evidence for the fetal origins of some neurodevelopmental disorders underscores the importance of identifying features of healthy fetal brain functional development. Alterations in prenatal brain connectomics may serve as early markers for identifying fetal-onset neurodevelopmental disorders, which in turn provide improved surveillance of at-risk fetuses and support the initiation of early interventions.
Keywords: fetal brain development; fetal connectome; global network organization; graph theory; resting state MRI.
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Figures




References
-
- André M, Lamblin M-D, d’Allest AM, Curzi-Dascalova L, Moussalli-Salefranque F, Nguyen S, The T, Vecchierini-Blineau M-F, Wallois F, Walls-Esquivel E, et al. . 2010. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol Clin. 40:59–124. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous