Understanding Changes in Hippocampal Interneurons Subtypes in the Pathogenesis of Alzheimer's Disease: A Systematic Review
- PMID: 33559520
- DOI: 10.1089/brain.2020.0879
Understanding Changes in Hippocampal Interneurons Subtypes in the Pathogenesis of Alzheimer's Disease: A Systematic Review
Abstract
Background: It is becoming increasingly recognized that there is significant interneuron degeneration in Alzheimer's disease. As the hippocampus is integral for learning and memory, we performed a systematic review of primary literature focused on the relationship between Alzheimer's and hippocampal interneurons. In this study, we summarize the experimental work performed to date and identify opportunities for future experiments. Objectives: This PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-style systematic review seeks to summarize the findings of all accessible research focused on cholecystokinin (CCK), neuropeptide Y (NPY), parvalbumin (PV), and somatostatin (SOM) interneurons in the hippocampal formation. Results: One thousand five hundred ninety-three articles were pulled from PubMed, PsycInfo, and Web of Science, based on three blocks of search terms. There were 45 articles that met all the predetermined inclusion/exclusion criteria. There is strong evidence that PV interneurons are affected early in the disease by toxic amyloid beta (Aβ) fragments; SOM interneurons are affected indirectly while the SOM neuropeptide may act to slowly worsen toxic Aβ fragment accumulation, whereas NPY- and CCK-positive interneurons are affected later in the progression of the disease. Conclusions: Fewer studies have been performed on NPY and CCK interneurons, and there is room for further investigations regarding the role of PV interneurons in Alzheimer's to help resolve contradictory findings. This review found that PV interneurons are affected early in the disease, but only in Alzheimer's precursor protein but not tau models. NPY and CCK interneurons were found to be affected later in the disease, and SOM interneurons vary greatly. Future studies may consider reporting immunohistochemical studies inclusive of either cell location or morphology-as well as marker to give a more robust picture of the disease.
Keywords: Alzheimer's disease; hippocampus; interneuron.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
